Skip to main content

Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors

  • Chapter
  • First Online:
Anisotropic and Shape-Selective Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The development of nanomotors (nano- and micron sized particles that convert energy into mechanical movement) is an exciting endeavor. Nanomotors have been crafted in an extensive variety of sizes, morphologies and compositions for applications such as drug delivery, cargo transport, sensing , and lithography. Inspired by nature’s elegant use of chemical gradients and cellular tracks for independently driven molecular processes, a variety of machines have been created. With the recent bestowment of the Nobel Prize for molecular machines, this concept is being actively pursued to create inorganic nano- and microparticles that independently move for a gamut of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badjić, J.D., et al. 2004. A molecular elevator. Science 303: 1845–1849.

    Article  Google Scholar 

  2. Bruns, C.J., and J.F. Stoddart. 2014. Rotaxane-based molecular muscles. Accounts of Chemical Research 47: 2186–2199.

    Article  CAS  Google Scholar 

  3. Balzani, V., et al. 2006. Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences 103 (5): 1178–1183.

    Google Scholar 

  4. Duan, W., et al. 2015. Synthetic nano- and micromachines in analytical chemistry: Sensing, migration, capture, delivery and separation. Annual Review of Analytical Chemistry 8: 311–333.

    Article  Google Scholar 

  5. Ge, Y., et al. 2016. Dual-fuel-driven bactericidal micromotor. Nano-Micro Letters 8 (2): 157–164.

    Article  Google Scholar 

  6. Li, J., et al. 2015. Self-propelled nanomotors autonomously seek and repair cracks. Nano Letters 15: 7077–7085.

    Article  CAS  Google Scholar 

  7. Kagan, D., P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G. Flechsig, and J. Wang. 2009. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. Journal of the American Chemical Society 131: 12082–12083.

    Article  CAS  Google Scholar 

  8. Demirok, U.K., et al. 2008. Ultrafast catalytic alloy nanomotors. Angewandte Chemie International Edition 47 (48): 9349–9351.

    Article  CAS  Google Scholar 

  9. Cai, K., et al. 2016. A method for measuring rotation of a thermal carbon nanomotor using centrifugal effect. Scientific Reports 6: 27338.

    Article  CAS  Google Scholar 

  10. Wang, W., et al. 2013. Understanding the efficiency of autonomous nano- and microscale motors. Journal of the American Chemical Society 135: 10557–10565.

    Article  CAS  Google Scholar 

  11. Liu, R., and A. Sen. 2011. Autonomous nanomotor based on copper-platinum segmented nanobattery. Journal of the American Chemical Society 133: 20064–20067.

    Article  CAS  Google Scholar 

  12. Vach, P.J., S. Klumpp, and D. Faivre. 2016. Steering magnetic micropropllers along independent trajectories. Journal of Physics D: Applied Physics 49: 065003.

    Article  Google Scholar 

  13. Gao, W., et al. 2012. Cargo-towing fuel-free magnetic nanowsimmers for targeted drug delivery. Small 8 (3): 460–467.

    Article  CAS  Google Scholar 

  14. Chen, J., et al. 2015. Impeded mass transportation due to defects in thermally driven nanotube nanmotor. Journal of Physical Chemistry C 119: 17362–17368.

    Article  CAS  Google Scholar 

  15. Li, J., et al. 2014. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8: 11118–11125.

    Article  CAS  Google Scholar 

  16. Abdelmohsen, L.K.E.A., M. Nijemeisland, G.M. Pawar, G.A. Janssen, R.J.M. Nolte, J.C.M. van Hest, and D.A. Wilson. 2016. Dynamic loading and unloading of proteins in polymeric stomatocytes: Formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10: 2652–2660.

    Article  CAS  Google Scholar 

  17. Gao, W., S. Sattayasamitsathit, and J. Wang. 2012. Catalytically propelled micro-/nanomotors: How fast can they move? The Chemical Record 12 (1): 224–231.

    Google Scholar 

  18. Young, L.E. 2009. Equine athletes, the equine athlete’s heart and racing success. Experimental Physiology 88 (5): 659–663.

    Article  Google Scholar 

  19. Rubin, S., M.H. Young, J.C. Wright, D.L. Whitaker, and A.N. Ahn. 2016. Exceptional running and turning performance in a mite. Journal of Experimental Biology 219: 676–685.

    Article  Google Scholar 

  20. Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Accounts of Chemical Research 34: 412–420.

    Article  CAS  Google Scholar 

  21. Roberts, A.J., et al. 2013. Functions and mechanisms of dynein motor proteins. Nature Reviews Molecular Cell Biology 14: 713–726.

    Article  CAS  Google Scholar 

  22. Bayly, P.V., and S.K. Dutcher. 2016. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. Journal of the Royal Society, Interface 13 (123): 20160523.

    Article  Google Scholar 

  23. Gennerich, A., and R.D. Vale. 2009. Walking the walk: How kinesin and dynein coordinate their steps. Current Opinion in Cell Biology 21: 59–67.

    Article  CAS  Google Scholar 

  24. Ishijima, S. 2016. Self-sustained oscillatory sliding movement of doublet microtubules and flagellar bend formation. PLoS ONE 11 (2): e0148880.

    Article  Google Scholar 

  25. Esteban-Fernández de Ávila, B., et al. 2016. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 10: p 4997–5005.

    Google Scholar 

  26. Purcell, E.M. 1977. Life at low reynolds number. American Journal of Physics 45: 3–11.

    Article  Google Scholar 

  27. Wang, W., et al. 2015. From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors. Accounts of Chemical Research 48: 1938–1946.

    Article  CAS  Google Scholar 

  28. Pavlick, R.A., et al. 2011. A polymerization-powered motor. Angewandte Chemie International Edition 50 (40): 9374–9377.

    Article  CAS  Google Scholar 

  29. Ma, X., et al. 2015. Enzyme-powered hollow mesoporous janus nanomotors. Nano Letters 15: 7043–7050.

    Article  Google Scholar 

  30. Wong, F., and A. Sen. 2016. Progress toward light-harvesting self-electrophoretic motors: Highly efficient bimetallic nanomotors and micropumps in halogen media. ACS Nano 10: 7172–7179.

    Article  CAS  Google Scholar 

  31. Perro, A., et al. 2009. Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids and Surfaces A 332 (1): 57–62.

    Article  CAS  Google Scholar 

  32. Walker, D., et al. 2015. Optimal length of low reynolds number nanopropellers. Nano Letters 15 (7): 4412–4416.

    Article  CAS  Google Scholar 

  33. Mandal, P., V. Choptra, and A. Ghosh. 2015. Independent positioning of magnetic nanomotors. ACS Nano 9 (5): 4717–4725.

    Article  CAS  Google Scholar 

  34. Gao, W., et al. 2011. Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small 7 (14): 2047–2051.

    Article  CAS  Google Scholar 

  35. Li, J., et al. 2015. Magneto-acoustic hybrid nanomotor. Nano Letters 15: 4814–4821.

    Article  CAS  Google Scholar 

  36. Wang, W., et al. 2015. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chemical Communications 51: 1020–1023.

    Article  CAS  Google Scholar 

  37. Ahmed, S., et al. 2016. Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10: 4763–4769.

    Article  CAS  Google Scholar 

  38. Wang, W., et al. 2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6: 6122–6132.

    Article  CAS  Google Scholar 

  39. Nadal, F., and E. Lauga. 2014. Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Physics of Fluids 26: 082001.

    Article  Google Scholar 

  40. Rao, K.J., et al. 2015. A force to be reckoned with: A review of synthetic microswimmers powered by ultrasound. Small 11 (24): 2836–2846.

    Article  CAS  Google Scholar 

  41. Liaw, J., Y. Chen, and M. Kuo. 2014. Rotating Au nanorod and nanowire driven by circularly polarized light. Optics Express 22 (21): 26005–26015.

    Article  CAS  Google Scholar 

  42. Liaw, J., Y. Chen, and M. Kuo. 2016. Spinning gold nanoparticles driven by circularly polarized light. Journal of Quantitative Spectroscopy and Radiative Transfer 175: 46–53.

    Article  CAS  Google Scholar 

  43. Guix, M., C.C. Mayorga-Martinez, and A. Merkoçi. 2014. Nano/micromotors in (bio) chemical science applications. Chemical Reviews 114: 6285–6322.

    Article  CAS  Google Scholar 

  44. Bonin, K.D., B. Kourmanov, and T.G. Walker. 2002. Light torque nanocontrol, nanomotors and nanorockets. Optics Express 10 (19): 984–989.

    Article  Google Scholar 

  45. Sundararajan, S., et al. 2008. Catalytic motors for transport of colloidal cargo. Nano Letters 8: 1271–1276.

    Article  CAS  Google Scholar 

  46. Lee, Y., and Z. Wu. 2015. Enhancing macrophage drug delivery efficiency via co-localization of cells and drug-loaded microcarriers in a 3D resonant ultrasound field. PLoS ONE 10 (8): e0135321.

    Article  Google Scholar 

  47. Pijper, D., et al. 2005. Acceleration of a nanomotor: Electronic control of the rotary speed of a light-driven molecular rotor. Journal of the American Chemical Society 127 (50): 17612–17613.

    Article  CAS  Google Scholar 

  48. Eelkema, R., et al. 2006. Nanomotor rotates microscale objects. Nature 440: 163.

    Article  CAS  Google Scholar 

  49. Chałupniak, A., E. Morales-Narváez, and A. Merkoçi. 2015. Micro and nanomotors in diagnostics. Advanced Drug Delivery Reviews 95: 104–116.

    Article  Google Scholar 

  50. Küchler, A., et al. 2016. Enzymatic reactions in confined environments. Nature Nanotechnology 11: 409–420.

    Article  Google Scholar 

  51. Akhavan, O., M. Saadati, and M. Jannesari. 2016. Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Letters 15: 5619–5630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaitlin J. Coopersmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Coopersmith, K.J. (2017). Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors. In: Hunyadi Murph, S., Larsen, G., Coopersmith, K. (eds) Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59662-4_6

Download citation

Publish with us

Policies and ethics