Skip to main content

Fluid-Structure Interaction Modeling in 3D Cerebral Arteries and Aneurysms

  • Chapter
  • First Online:
Biomedical Technology

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 84))

Abstract

In recent years, there have been great interests in fluid-structure interaction (FSI) problems due to their relevance in biomedical applications. However, several difficulties have hindered the development of partitioned FSI algorithms in modeling cerebral arteries and aneurysms. For example, the relatively small values of the mass ratio between the arterial wall and the blood will cause instabilities in coupled solvers, the arterial wall responses are very complicated therefore difficult to be described by classical structural models, accurate simulations in patient-specific geometries require large CPU time, and so on. To resolve these difficulties, the investigation of proper models for the aneurysms and the design of efficient and stable numerical schemes of these models are considered in this chapter. To be specific, we first contribute on stabilizing the partitioned fluid-structure interaction procedure and resolving the added-mass effect, then develop and employ fractional PDEs to model the complex biomechanical viscoelastic properties of patient-specific aneurysms. To validate the optimal coefficient analysis, the FSI framework is applied to patient-specific aneurysms, hence demonstrating the general applicability of the proposed model and the developed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J. Sherwin, P.R. Verdonck, K.H. Parker, J. Peiró, Pulse wave propagation in a model human arterial network: assessment of 1-d visco-elastic simulations against in vitro measurements. J. Biomech. 44(12), 2250–2258 (2011)

    Article  Google Scholar 

  2. J. Alastruey, K.H. Parker, J. Peiro, S.M. Byrd, S.J. Sherwin, Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40(8), 1794–1805 (2007)

    Article  Google Scholar 

  3. M. Astorino, F. Chouly, M.A. Fernández, Robin based semi-implicit coupling in fluid-structure interaction: stability analysis and numerics. SIAM J. Sci. Comput. 31(6), 4041–4065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Badia, F. Nobile, C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Baek, G.E. Karniadakis, Sub-iteration leads to accuracy and stability enhancements of semi-implicit schemes for the Navier-Stokes equations. J. Comput. Phys. 230(12), 4384–4402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Baek, G.E. Karniadakis, A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys. 231(2), 629–652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.J. Bank, D.R. Kaiser, S. Rajala, A. Cheng, In vivo human brachial artery elastic mechanics effects of smooth muscle relaxation. Circulation 100(1), 41–47 (1999)

    Article  Google Scholar 

  8. Y. Bazilevs, M.C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, J.G. Isaksen, A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput. Mech. 46(1), 3–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Causin, J.F. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.R. Cebral, X. Duan, B.J. Chung, C. Putman, K. Aziz, A.M. Robertson, Wall mechanical properties and hemodynamics of unruptured intracranial aneurysms. Am. J. Neuroradiol. 36(9), 1695–1703 (2015)

    Article  Google Scholar 

  11. D. Craiem, R.L. Magin, Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7(1), 013,001 (2010)

    Google Scholar 

  12. D.O. Craiem, R.L. Armentano, A fractional derivative model to describe arterial viscoelasticity. Biorheology 44(4), 251–263 (2007)

    Google Scholar 

  13. D.O. Craiem, F.J. Rojo, J.M. Atienza, R.L. Armentano, G.V. Guinea, Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53(17), 4543 (2008)

    Article  Google Scholar 

  14. D.O. Craiem, F.J. Rojo, J.M. Atienza, G.V. Guinea, R.L. Armentano, Fractional calculus applied to model arterial viscoelasticity. Lat. Am. Appl. Res. 38(2), 141–145 (2008)

    Google Scholar 

  15. P. Crosetto, S. Deparis, G. Fourestey, A. Quarteroni, Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. Sci. Comput. 33(4), 1598–1622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, A. Quarteroni, Fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43(1), 46–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Degroote, J. Vierendeels, Multi-solver algorithms for the partitioned simulation of fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 200(25–28), 2195–2210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. T.C. Doehring, A.D. Freed, E.O. Carew, I. Vesely, Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. ASME J. Biomech. Eng. 127(4), 700–708 (2005)

    Article  Google Scholar 

  19. S. Dong, BDF-like methods for nonlinear dynamic analysis. J. Comput. Phys. 229(8), 3019–3045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Dong, Z. Yosibash, A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput. Struct. 87(1–2), 59–72 (2009)

    Article  Google Scholar 

  21. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues. Springer (1993)

    Google Scholar 

  22. M.W. Gee, U. Kuttler, W.A. Wall, Truly monolithic algebraic multigrid for fluid-structure interaction. Int. J. Numer. Methods Eng. 85(8), 987–1016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Gerardo-Giorda, F. Nobile, C. Vergara, Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48(6), 2091–2116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Guidoboni, R. Glowinski, N. Cavallini, S. Canic, Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.C. Hsu, Y. Bazilevs, Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47(6), 593–599 (2011)

    Article  MathSciNet  Google Scholar 

  26. T.J.R. Hughes, W.K. Liu, T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.R. Hutchinson, Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68(1), 87–92 (2001)

    Article  MATH  Google Scholar 

  28. E. Järvinen, P. Råback, M. Lyly, J.P. Salenius, A method for partitioned fluid-structure interaction computation of flow in arteries. Med. Eng. Phys. 30(7), 917–923 (2008)

    Article  Google Scholar 

  29. M.M. Joosten, W.G. Dettmer, D. Peric, Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. Int. J. Numer. Methods Eng. 78(7), 757–778 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. G.E. Karniadakis, M. Israeli, S. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. (Numerical Mathematics and Scientific Computation (Oxford University Press, Oxford, 2005)

    Book  MATH  Google Scholar 

  32. M. López-Fernández, C. Lubich, A. Schädle, Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Lubich, A. Schädle, Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.L. Magin, Fractional Calculus in Bioengineering (Begell House Publishers Inc., Redding, CT, 2006)

    Google Scholar 

  35. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. (World Scientific, 2010)

    Google Scholar 

  36. F.B. Meyer, J. Huston, S.S. Riederer, Pulsatile increases in aneurysm size determined by cine phase-contrast MR angiography. J. Neurosurg. 78(6), 879–883 (1993)

    Article  Google Scholar 

  37. C. Michler, H. van Brummelen, R. de Borst, An investigation of interface-GMRES(R) for fluid-structure interaction problems with flutter and divergence. Comput. Mech. 47(1), 17–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Nobile, Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3D and 1D models. Math. Comput. Model. 49(11–12), 2152–2160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Nobile, C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30(2), 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Perdikaris, G.E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42(5), 1012–1023 (2014)

    Article  Google Scholar 

  41. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. (Academic Press, 1998)

    Google Scholar 

  42. A. Quarteroni, L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Computational Models for the Human Body, ed. by N. Ayache. Handbook of Numerical Analysis, vol. 12. (Elsevier, 2004), pp. 3–127

    Google Scholar 

  43. P. Reymond, Y. Bohraus, F. Perren, F. Lazeyras, N. Stergiopulos, Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol.-Heart Circ. Physiol. 301(3), 1173–1182 (2011)

    Google Scholar 

  44. M. Rizzardi, A modification of talbot’s method for the simultaneous approximation of several values of the inverse Laplace transform. ACM Trans. Math. Softw. (TOMS) 21(4), 347–371 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. A.M. Robertson, X. Duan, K.M. Aziz, M.R. Hill, S.C. Watkins, J.R. Cebral, Diversity in the strength and structure of unruptured cerebral aneurysms. Ann. Biomed. Eng. 1–14 (2015)

    Google Scholar 

  46. A.M. Robertson, M.R. Hill, D. Li, Structurally motivated damage models for arterial walls. theory and application, in Modeling of Physiological Flows. (Springer, 2012), pp. 143–185

    Google Scholar 

  47. F.X. Roux, J.D. Garaud, Domain decomposition methodology with Robin interface matching conditions for solving strongly coupled fluid-structure problems. Int. J. Multiscale Comput. Eng. 7(1), 29–38 (2009)

    Article  Google Scholar 

  48. C. Sadasivan, D.J. Fiorella, H.H. Woo, B.B. Lieber, Physical factors effecting cerebral aneurysm pathophysiology. Ann. Biomed. Eng. 41(7), 1347–1365 (2013)

    Article  Google Scholar 

  49. A. Talbot, The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 23(1), 97–120 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  50. T.E. Tezduyar, K. Takizawa, T. Brummer, P.R. Chen, Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. 27(11), 1665–1710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, T.E. Tezduyar, Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput. Methods Appl. Mech. Eng. 195(13–16), 1885–1895 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Toth, G.L. Nadasy, I. Nyary, T. Kerényi, M.s. Orosz, G. Molnarka, E. Monos, Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms. J. Vasc. Res. 35(5), 345–355 (1998)

    Article  Google Scholar 

  53. J. Van Gijn, G.J.E. Rinkel, Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(2), 249–278 (2001)

    Article  Google Scholar 

  54. Y. Yu, H. Baek, M.L. Bittencourt, G.E. Karniadakis, Mixed spectral/hp element formulation for nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 213–216, 42–57 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Y. Yu, H. Baek, G.E. Karniadakis, Generalized fictitious methods for fluidstructure interactions: Analysis and simulations. J. Comput. Phys. 245, 317–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Y. Yu, P. Perdikaris, G.E. Karniadakis, Fractional modeling of viscoelasticity in 3d cerebral arteries and aneurysms. Submitted to J. Comput. Phys. (2016)

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge support by the Simons collaboration grant, the NSF grant 1620434, and the computational resources of CCV at Brown University. She would also like to thank Professor George Karniadakis at Brown University for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Y. (2018). Fluid-Structure Interaction Modeling in 3D Cerebral Arteries and Aneurysms. In: Wriggers, P., Lenarz, T. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-59548-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59548-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59547-4

  • Online ISBN: 978-3-319-59548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics