Skip to main content

An Open Source Spatiotemporal Model for Simulating Obesity Prevalence

  • Chapter
  • First Online:
GeoComputational Analysis and Modeling of Regional Systems

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

Obesity may be the single most challenging example for a condition with causes and consequences at multiple levels and with multiple feedback loops among influencing factors. New approaches to modeling obesity prevalence are needed to fully understand the complexities associated with the relationship between obesity and the demographic, socio-economic and environmental factors.

We describe in this paper a computer simulation project that focuses on the causes of obesity-related health disparities. In particular, our project adopts the susceptible, infected, and recovered (SIR) framework and the categorization of population into normal, overweight, obese, and extremely obese subpopulations. This project is important to public health because the fully developed computer application provides a new, more comprehensive, decision support tool for policy makers than most existing applications. The implementation of policies that effectively combat obesity would improve the health and well-being of a high percentage of the population, including both adults and children. It will also greatly reduce associated economic costs to society such as health care expenses and loss of productivity.

Being written in open source, our computer application is entirely cross-platform, lowering the transmission costs in research and education. Free access to the source code allows a broader community to incorporate additional advances in generating research questions for specific goals, thus facilitating collaboration across disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng J, Glass TA, Curriero FC, Stewart WF, Schwartz BS (2010) The built environment and obesity: a systematic review of the epidemiologic evidence. Health Place 16(2):175–190

    Article  Google Scholar 

  2. Morland KB, Evenson KR (2009) Obesity prevalence and the local food environment. Health Place 15(2):491–495

    Article  Google Scholar 

  3. Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, Parry V (2012) Tackling obesities: future choices: project report, 2nd edn. Foresight, United Kingdom Government Office for Science, London

    Google Scholar 

  4. Thomas DM, Weedermann M, Fuemmeler BF, Martin CK, Dhurandhar NV, Bredlau C, Heymsfield SB, Ravussin E, Bouchard C (2013) Dynamic model predicting overweight, obesity, and extreme obesity prevalence trends. Obesity. doi:10.1002/oby.20520

  5. Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B et al (2012) Obesity and severe obesity forecasts through 2030. Am J Prev Med 42(6):563–570

    Article  Google Scholar 

  6. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK (2008) Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity 16(10):2323–2330

    Article  Google Scholar 

  7. Auchincloss AH, Roux AVD (2008) A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health. Am J Epidemiol 168(1):1–8

    Article  Google Scholar 

  8. Anderson B, Rafferty AP, Lyon-Callo S, Fussman C, Imes G (2011) Fast-food CONSUMPTION and obesity among Michigan adults. Prev Chronic Dis 8(4):A71

    Google Scholar 

  9. Sonya AG, Mensinger G, Huang SH, Kumanyika SK, Stettler N (2007) Fast-food marketing and children’s fast-food consumption: exploring parents’ influences in an ethnically diverse sample. J Publ Policy Mark 26(2):221–235

    Article  Google Scholar 

  10. Lee RE, Mama SK, Medina AV, Ho A, Adamus HJ (2012) Neighborhood factors influence physical activity among African American and Hispanic or Latina women. Health Place 18(1):63–70

    Article  Google Scholar 

  11. Nielsen SJ, Siega-Riz AM, Popkin BM (2002) Trends in food locations and sources among adolescents and young adults. Prev Med 35:107–113

    Article  Google Scholar 

  12. Cummins S, Macintyre S (2005) Food environments and obesity-neighborhood or nation? Int J Epidemiol 35:100–104

    Article  Google Scholar 

  13. Prentice AM, Jebb SA (2003) Fast foods, energy density and obesity: a possible mechanistic link. Obes Rev 4(4):187–194

    Article  Google Scholar 

  14. Paeratakul S, Ferdinand DP, Champagne CM, Ryan DH, Bray GA (2003) Fast-food consumption among U.S. adults and children: dietary and nutrient intake profile. J Am Diet Assoc 103(10):1332–1388

    Article  Google Scholar 

  15. McEntee J, Aygeman J (2009) Towards the development of a GIS method for identifying rural food deserts: geographic access in Vermont, USA. Appl Geogr 30:165–176

    Article  Google Scholar 

  16. Gebel K, Bauman AE, Petticrew M (2007) The physical environment and physical activity: a critical appraisal of review articles. Am J Prev Med 32(5):361–369

    Article  Google Scholar 

  17. Witten K, Hiscock R, Pearce J, Blakely T (2008) Neighbourhood access to open spaces and the physical activity of residents: a national study. Prev Med 47:299–303

    Article  Google Scholar 

  18. Davison KK, Lawson CT (2006) Do attributes in the physical environment influence children’s physical activity? A review of the literature. Int J Behav Nutr Phys Act 3:19

    Article  Google Scholar 

  19. Owen N, Humpel N, Leslie E, Bauman A, Sallis J (2004) Understanding environmental influences on walking; review and research agenda. Am J Prev Med 27(1):67–76

    Article  Google Scholar 

  20. Mobley LR, Root ED, Finkelstein EA, Khavjou O, Farris RP, Will JC (2006) Environment, Obesity, and cardiovascular disease in low-income women. Am J Prev Med 30(4):327–332

    Article  Google Scholar 

  21. Boehmer TK, Hoehner CM, Despande AD, Brennan Ramirez LK, Brownson RC (2007) Perceived and observed neighborhood indicators of obesity among urban adults. Int J Obes (Lond) 97(3):486–492

    Google Scholar 

  22. Giles-Corti B, Timperio A, Bull F, Pikora T (2005) Understanding physical activity environmental correlates: increased specificity for ecological models. Exerc Sport Sci Rev 33(4):175–181

    Article  Google Scholar 

  23. Lee CD, Blair SN, Jackson AS (1999) Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr 69:373–380

    Google Scholar 

  24. Levy D, Mabry P, Wang Y, Gortmaker S, Huang TK, Marsh T, Moodie M, Swinburn B (2011) Simulation models of obesity: a review of the literature and implications for research and policy. Obes Rev 12(5):378–394

    Article  Google Scholar 

  25. Burke MA, Heiland F (2007) Social dynamics of obesity. Econ Inq 45(3):571–591

    Article  Google Scholar 

  26. Hammond R, Epstein J (2007) Exploring price-independent mechanisms in the obesity epidemic. Center on Social and Economic Dynamics Working Paper

    Google Scholar 

  27. Auchincloss AH, Riolo RL, Brown DG, Cook J, Diez Roux AV (2011) An agent-based model of income inequalities in diet in the context of residential segregation. Am J Prev Med 40(3):303–311

    Article  Google Scholar 

  28. Yang Y, Diez Roux AV, Auchincloss AH, Rodriguez DA, Brown DG (2011) A spatial agent-based model for the simulation of adults' daily walking within a city. Am J Prev Med 40(3):353–361

    Article  Google Scholar 

  29. Goodchild MF, Glennon A (2008) Representation and computation of geographic dynamics. In: Hornsby KS, Yuan M (eds) Understanding dynamics of geographic domains. CRC, Boca Raton, FL, pp 13–30

    Google Scholar 

  30. Krugman P (1999) The role of geography in development. Int Reg Sci Rev 22(2):142–161

    Article  Google Scholar 

  31. Ye X, Wu L (2011) Analyzing the dynamics of homicide patterns in Chicago: ESDA and spatial panel approaches. Appl Geogr 31(2):800–807

    Article  Google Scholar 

  32. Ye X, Rey S (2013) A framework for exploratory space-time analysis of economic data. Ann Reg Sci 50(1):315–339

    Article  Google Scholar 

  33. Rey S, Ye X (2010) Comparative spatial dynamics of regional systems. In: Páez A et al (eds) Progress in spatial analysis. Springer, Berlin, pp 441–463

    Chapter  Google Scholar 

  34. Balcan D, Goncalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A (2010) Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model. J Comput Sci 1(3):132–145. doi:10.1016/j.jocs.2010.07.002. Epub 2011/03/19

    Article  Google Scholar 

  35. Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303(3):235–241. doi:10.1001/jama.2009.2014. Epub 2010/01/15 2009.2014

    Article  Google Scholar 

  36. Oizumi R, Takada T (2013) Optimal life schedule with stochastic growth in age-size structured models: Theory and an application. J Theor Biol 323:76–89. doi:10.1016/j.jtbi.2013.01.020. Epub 2013/02/09

    Article  Google Scholar 

  37. Shneiderman B (1996). The eyes have it: a task by data type taxonomy for information visualizations. In: Visual languages, 1996. Proceedings., IEEE Symposium on. IEEE, pp 336–343

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Science Foundation under Grant No. 1416509, project titled “Spatiotemporal Modeling of Human Dynamics Across Social Media and Social Networks”. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyue Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, J., Ye, X. (2018). An Open Source Spatiotemporal Model for Simulating Obesity Prevalence. In: Thill, JC., Dragicevic, S. (eds) GeoComputational Analysis and Modeling of Regional Systems. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-59511-5_20

Download citation

Publish with us

Policies and ethics