Skip to main content

Lectures on Bridgeland Stability

  • Chapter
  • First Online:
Moduli of Curves

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 21))

Abstract

In these lecture notes we give an introduction to Bridgeland stability conditions on smooth complex projective varieties with a particular focus on the case of surfaces. This includes basic definitions of stability conditions on derived categories, basics on moduli spaces of stable objects and variation of stability. These notes originated from lecture series by the first author at the summer school Recent advances in algebraic and arithmetic geometry, Siena, Italy, August 24–28, 2015 and at the school Moduli of Curves, CIMAT, Guanajuato, Mexico, February 22–March 4, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Example 2.18.

  2. 2.

    To be precise, we need to modify the equivalence relation for \(\underline{M}_{C}^{s}(r,d)(B)\): \(\mathcal{E}\sim \mathcal{E}'\) if and only if \(\mathcal{E}\cong \mathcal{E}'\otimes p_{B}^{{\ast}}\mathcal{L}\), where \(\mathcal{L}\in \mathop{\mathrm{Pic}}\nolimits (B)\).

  3. 3.

    By using the morphism \(\det: M_{C}(r,d) \rightarrow \mathop{\mathrm{Pic}}\nolimits ^{d}(C)\), and observing that M C (r, L) = det −1(L).

  4. 4.

    If we let \(\pi: X:= \mathbb{P}_{C}(U) \rightarrow C\) be the corresponding ruled surface, then (1) implies that the nef divisor \(\mathcal{O}_{\pi }(1)\) is not ample, although it has the property that \(\mathcal{O}_{\pi }(1)\cdot \gamma> 0\), for all curves γX.

  5. 5.

    More generally, by fixing \(\phi _{0} \in \mathbb{R}\), the category \(\mathcal{P}((\phi _{0},\phi _{0} + 1])\) is also a heart of a bounded t-structure. A slicing is a family of hearts, parameterized by \(\mathbb{R}\).

  6. 6.

    More precisely, \(A \in \mathcal{P}(<\phi _{0})\) and \(B \in \mathcal{P}(\geq \phi _{0})\), for some \(\phi _{0} \in \mathbb{R}\).

  7. 7.

    This is commonly called a simple object. Unfortunately, in the theory of semistable sheaves, the word “simple” is used to indicate \(\mathop{\mathrm{Hom}}\nolimits (S,S) = \mathbb{C}\); this is why we use this slightly non-standard notation.

References

  1. D. Abramovich, A. Polishchuk, Sheaves of t-structures and valuative criteria for stable complexes. J. Reine Angew. Math. 590, 89–130 (2006)

    MathSciNet  MATH  Google Scholar 

  2. J. Alper, D.I. Smyth, Existence of good moduli spaces for A k -stable curves (2012). arXiv:1206.1209

    Google Scholar 

  3. J. Alper, J. Hall, D. Rydh, A Luna étale slice theorem for algebraic stacks (2015). arXiv:1504.06467

    Google Scholar 

  4. L. Álvarez-Cónsul, A. King, A functorial construction of moduli of sheaves. Invent. Math. 168(3), 613–666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Anno, R. Bezrukavnikov, I. Mirković, Stability conditions for Slodowy slices and real variations of stability. Mosc. Math. J. 15(2), 187–203, 403 (2015)

    Google Scholar 

  6. D. Arcara, A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces. J. Eur. Math. Soc. (JEMS) 15(1), 1–38 (2013). With an appendix by Max Lieblich

    Google Scholar 

  7. D. Arcara, E. Miles, Projectivity of Bridgeland moduli spaces on del Pezzo surfaces of Picard rank 2 (2015). arXiv:1506.08793

    Google Scholar 

  8. D. Arcara, A. Bertram, I. Coskun, J. Huizenga, The minimal model program for the Hilbert scheme of points on \(\mathbb{P}^{2}\) and Bridgeland stability. Adv. Math. 235, 580–626 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in String Theory (World Scientific Publishing, Hackensack, NJ, 2005), pp. 1–152

    MATH  Google Scholar 

  10. M.F. Atiyah, Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) 7, 414–452 (1957)

    Google Scholar 

  11. A. Bayer, A tour to stability conditions on derived categories, http://www.maths.ed.ac.uk/~abayer/dc-lecture-notes.pdf (2011)

  12. A. Bayer, Wall-crossing implies Brill-Noether. Applications of stability conditions on surfaces (2016). arXiv:1604.08261

    Google Scholar 

  13. A. Bayer, A short proof of the deformation property of Bridgeland stability conditions (2016). arXiv:1606.02169

    Google Scholar 

  14. A. Bayer, T. Bridgeland, Derived automorphism groups of K3 surfaces of Picard rank 1. Duke Math. J. 166(1), 75–124 (2017)

    Google Scholar 

  15. A. Bayer, E. Macrì, The space of stability conditions on the local projective plane. Duke Math. J. 160(2), 263–322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bayer, E. Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations. Invent. Math. 198(3), 505–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Bayer, E. Macrì, Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc. 27(3), 707–752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Bayer, E. Macrì, Y. Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities. J. Algebraic Geom. 23(1), 117–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bayer, E. Macrì, P. Stellari, The space of stability conditions on abelian threefolds, and on some Calabi-Yau threefolds. Invent. Math. 206(3), 869–933 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Bayer, M. Lahoz, E. Macrì, P. Stellari, Stability conditions on Kuznetsov components (2016). arXiv:1703.10839

    Google Scholar 

  21. A.A. Beilinson, Coherent sheaves on P n and problems in linear algebra. Funktsional. Anal. i Prilozhen. 12(3), 68–69 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. A.A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, in Analysis and Topology on Singular Spaces, I (Luminy, 1981). Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), pp. 5–171

    Google Scholar 

  23. M. Bernardara, E. Macrì, B. Schmidt, X. Zhao, Bridgeland stability conditions on Fano threefolds (2016). arXiv:1607.08199

    Google Scholar 

  24. F.A. Bogomolov, Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 42(6), 1227–1287, 1439 (1978)

    Google Scholar 

  25. B. Bolognese, J. Huizenga, Y. Lin, E. Riedl, B. Schmidt, M. Woolf, X. Zhao, Nef cones of Hilbert schemes of points on surfaces, 2015. Algebra Number Theory 10(4), 907–930 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties (1995). arXiv:alg-geom/9506012

    Google Scholar 

  27. A. Bondal, M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36, 258 (2003)

    Google Scholar 

  28. T. Bridgeland, Derived categories of coherent sheaves, in International Congress of Mathematicians. vol. II (European Mathematical Society, Zürich, 2006), pp. 563–582

    Google Scholar 

  29. T. Bridgeland, Stability conditions on a non-compact Calabi-Yau threefold. Commun. Math. Phys. 266(3), 715–733 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Bridgeland, Stability conditions on triangulated categories. Ann. Math. (2) 166(2), 317–345 (2007)

    Google Scholar 

  31. T. Bridgeland, Stability conditions on K3 surfaces. Duke Math. J. 141(2), 241–291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Bridgeland, Spaces of stability conditions, in Algebraic Geometry—Seattle 2005. Part 1. Proceedings of Symposia in Pure Mathematics, vol. 80 (American Mathematical Society, Providence, RI, 2009), pp. 1–21

    Google Scholar 

  33. T. Bridgeland, A. Maciocia, Fourier-Mukai transforms for K3 and elliptic fibrations. J. Algebraic Geom. 11(4), 629–657 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Bridgeland, I. Smith, Quadratic differentials as stability conditions. Publ. Math. Inst. Hautes Études Sci. 121, 155–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Castelnuovo, Richerche di geometria sulle curve algebriche (Zanichelli, Bologna, 1937)

    Google Scholar 

  36. F. Catanese, L. Göttsche, d-very-ample line bundles and embeddings of Hilbert schemes of 0-cycles. Manuscr. Math. 68(3), 337–341 (1990)

    Google Scholar 

  37. I. Coskun, J. Huizenga, The nef cone of the moduli space of sheaves and strong Bogomolov inequalities (2015). arXiv:1512.02661

    Google Scholar 

  38. I. Coskun, J. Huizenga, M. Woolf, The effective cone of the moduli space of sheaves on the plane. J. Eur. Math. Soc. 19(5), 1421–1467 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. U.V. Desale, S. Ramanan, Classification of vector bundles of rank 2 on hyperelliptic curves. Invent. Math. 38(2), 161–185 (1976/1977)

    Google Scholar 

  40. G. Dimitrov, F. Haiden, L. Katzarkov, M. Kontsevich, Dynamical systems and categories, in The Influence of Solomon Lefschetz in Geometry and Topology. Contemporary Mathematics, vol. 621 (American Mathematical Society, Providence, RI, 2014), pp. 133–170

    Google Scholar 

  41. M.R. Douglas, Dirichlet branes, homological mirror symmetry, and stability, in Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) (Higher Education Press, Beijing, 2002), pp. 395–408

    Google Scholar 

  42. J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97(1), 53–94 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Fogarty, Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Fogarty, Algebraic families on an algebraic surface. II. The Picard scheme of the punctual Hilbert scheme. Am. J. Math. 95, 660–687 (1973)

    MathSciNet  MATH  Google Scholar 

  45. W. Fulton, Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, 2nd edn. (Springer, Berlin, 1998)

    Google Scholar 

  46. D. Gaiotto, G.W. Moore, A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Gallardo, C.L. Huerta, B. Schmidt, Families of elliptic curves in \(\mathbb{P}^{3}\) and Bridgeland stability (2016). arXiv:1609.08184

    Google Scholar 

  48. F.J. Gallego, B.P. Purnaprajna, Vanishing theorems and syzygies for K3 surfaces and Fano varieties. J. Pure Appl. Algebra 146(3), 251–265 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. S.I. Gelfand, Y.I. Manin, Methods of Homological Algebra, 2nd edn. Springer Monographs in Mathematics (Springer, Berlin, 2003)

    Google Scholar 

  50. D. Gieseker, On the moduli of vector bundles on an algebraic surface. Ann. Math. (2) 106(1), 45–60 (1977)

    Google Scholar 

  51. D. Gieseker, On a theorem of Bogomolov on Chern classes of stable bundles. Am. J. Math. 101(1), 77–85 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  52. D.R. Grayson, Reduction theory using semistability. Comment. Math. Helv. 59(4), 600–634 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Haiden, L. Katzarkov, M. Kontsevich, Flat surfaces and stability structures (2014). arXiv:1409.8611

    Google Scholar 

  54. D. Happel, I. Reiten, S.O. Smalø, Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 120(575), viii+ 88 (1996)

    Google Scholar 

  55. G. Harder, M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212, 215–248 (1974/1975)

    Google Scholar 

  56. R. Hartshorne, Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics, vol. 156 (Springer, Berlin/New York, 1970). Notes written in collaboration with C. Musili

    Google Scholar 

  57. R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New York/Heidelberg, 1977)

    Google Scholar 

  58. G. Hein, D. Ploog, Postnikov-stability for complexes on curves and surfaces. Int. J. Math. 23(2), 1250048, 20 pp. (2012)

    Google Scholar 

  59. G. Hein, D. Ploog, Postnikov-stability versus semistability of sheaves. Asian J. Math. 18(2), 247–261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Huizenga, Birational geometry of moduli spaces of sheaves and Bridgeland stability (2016). arXiv:1606.02775

    Google Scholar 

  61. D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, Oxford, 2006)

    Book  MATH  Google Scholar 

  62. D. Huybrechts, Introduction to stability conditions, in Moduli Spaces. London Mathematical Society Lecture Note Series, vol. 411 (Cambridge University Press, Cambridge, 2014), pp. 179–229

    Google Scholar 

  63. D. Huybrechts, M. Lehn, The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library, 2nd edn. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  64. M. Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme. J. Math. Kyoto Univ. 42(2), 317–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  65. D. Joyce, Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds, special Lagrangians, and Lagrangian mean curvature flow. EMS Surv. Math. Sci. 2(1), 1–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. A.D. King, Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)

    Google Scholar 

  67. S. Kobayashi, Differential Geometry of Complex Vector Bundles. Publications of the Mathematical Society of Japan, vol. 15. (Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987). Kanô Memorial Lectures, 5

    Google Scholar 

  68. M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (2008). arXiv:0811.2435

    Google Scholar 

  69. A. Kuznetsov, Semiorthogonal decompositions in algebraic geometry (2014). arXiv:1404.3143

    Google Scholar 

  70. A. Langer, Semistable sheaves in positive characteristic. Ann. Math. (2) 159(1), 251–276 (2004)

    Google Scholar 

  71. R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, in Lectures on Riemann Surfaces (Trieste, 1987) (World Scientific Publishing, Teaneck, NJ, 1989), pp. 500–559

    MATH  Google Scholar 

  72. J. Le Potier, Lectures on Vector Bundles. Cambridge Studies in Advanced Mathematics, vol. 54 (Cambridge University Press, Cambridge, 1997). Translated by A. Maciocia

    Google Scholar 

  73. C. Li, Stability conditions on Fano threefolds of Picard number one (2015). arXiv:1510.04089

    Google Scholar 

  74. C. Li, X. Zhao, The MMP for deformations of Hilbert schemes of points on the projective plane (2013). arXiv:1312.1748

    Google Scholar 

  75. C. Li, X. Zhao, Birational models of moduli spaces of coherent sheaves on the projective plane (2016). arXiv:1603.05035.

    Google Scholar 

  76. M. Lieblich, Moduli of complexes on a proper morphism. J. Algebraic Geom. 15(1), 175–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Maciocia, Computing the walls associated to Bridgeland stability conditions on projective surfaces. Asian J. Math. 18(2), 263–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Maciocia, C. Meachan, Rank 1 Bridgeland stable moduli spaces on a principally polarized abelian surface. Int. Math. Res. Not. IMRN 9, 2054–2077 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Maciocia, D. Piyaratne, Fourier-Mukai transforms and Bridgeland stability conditions on abelian threefolds. Algebr. Geom. 2(3), 270–297 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. A. Maciocia, D. Piyaratne, Fourier–Mukai transforms and Bridgeland stability conditions on abelian threefolds II. Int. J. Math. 27(1), 1650007, 27 (2016)

    Google Scholar 

  81. E. Macrì, Stability conditions on curves. Math. Res. Lett. 14(4), 657–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. E. Macrì, A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space. Algebra Number Theory 8(1), 173–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Maruyama, Moduli of stable sheaves. I. J. Math. Kyoto Univ. 17(1), 91–126 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  84. M. Maruyama, Moduli of stable sheaves. II. J. Math. Kyoto Univ. 18(3), 557–614 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  85. K. Matsuki, R. Wentworth, Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface. Int. J. Math. 8(1), 97–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  86. H. Minamide, S. Yanagida, K. Yoshioka, Some moduli spaces of Bridgeland’s stability conditions. Int. Math. Res. Not. IMRN 19, 5264–5327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  87. M.S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface. Ann. Math. (2) 89, 14–51 (1969)

    Google Scholar 

  88. M.S. Narasimhan, C.S. Seshadri, Holomorphic vector bundles on a compact Riemann surface. Math. Ann. 155, 69–80 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  89. M.S. Narasimhan, C.S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. (2) 82, 540–567 (1965)

    Google Scholar 

  90. P.E. Newstead, Introduction to Moduli Problems and Orbit Spaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51 (Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978)

    Google Scholar 

  91. H. Nuer, Projectivity and birational geometry of Bridgeland moduli spaces on an Enriques surface. Proc. Lond. Math. Soc. 113(3), 345–386 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  92. S. Okada, Stability manifold of \(\mathbb{P}^{1}\). J. Algebraic Geom. 15(3), 487–505 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  93. M. Olsson, Algebraic Spaces and Stacks. Colloquium Publications, vol. 62 (American Mathematical Society, Providence, RI, 2016)

    Google Scholar 

  94. A. Ortega, On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic. J. Algebraic Geom. 14(2), 327–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  95. D. Piyaratne, Generalized Bogomolov-Gieseker type inequalities on Fano 3-folds (2016). arXiv:1607.07172

    Google Scholar 

  96. D. Piyaratne, Y. Toda, Moduli of Bridgeland semistable objects on 3-folds and Donaldson-Thomas invariants (2015). arXiv:1504.01177

    Google Scholar 

  97. A. Polishchuk, Abelian Varieties, Theta Functions and the Fourier Transform. Cambridge Tracts in Mathematics, vol. 153 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  98. A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves. Mosc. Math. J. 7(1), 109–134, 167 (2007)

    Google Scholar 

  99. M. Reid, Bogomolov’s theorem c 1 2 ≤ 4c 2, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977) (Kinokuniya Book Store, Tokyo, 1978), pp. 623–642

    Google Scholar 

  100. I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. (2) 127(2), 309–316 (1988)

    Google Scholar 

  101. B. Schmidt, A generalized Bogomolov-Gieseker inequality for the smooth quadric threefold. Bull. Lond. Math. Soc. 46(5), 915–923 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  102. B. Schmidt, Bridgeland stability on threefolds – Some wall crossings (2015). arXiv:1509.04608

    Google Scholar 

  103. B. Schmidt, Counterexample to the generalized Bogomolov–Gieseker inequality for threefolds. Int. Math. Res. Not. (8), 2562–2566 (2017)

    MathSciNet  Google Scholar 

  104. C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques. Astérisque, vol. 96 (Société Mathématique de France, Paris, 1982). Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980

    Google Scholar 

  105. C.S. Seshadri, Vector bundles on curves, in Linear Algebraic Groups and Their Representations (Los Angeles, CA, 1992). Contemporary Mathematics, vol. 153 (American Mathematical Society, Providence, RI, 1993), pp. 163–200

    Google Scholar 

  106. S. Shatz, Degeneration and specialization in algebraic families of vector bundles. Bull. Am. Math. Soc. 82(4), 560–562 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  107. C.T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  108. The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu (2016)

  109. Y. Toda, Moduli stacks and invariants of semistable objects on K3 surfaces. Adv. Math. 217(6), 2736–2781 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  110. Y. Toda, Limit stable objects on Calabi-Yau 3-folds. Duke Math. J. 149(1), 157–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  111. Y. Toda, Introduction and open problems of Donaldson-Thomas theory, in Derived Categories in Algebraic Geometry, EMS Series of Congress Reports, pp. 289–318 (European Mathematical Society, Zürich, 2012)

    Google Scholar 

  112. Y. Toda, Stability conditions and curve counting invariants on Calabi-Yau 3-folds. Kyoto J. Math. 52(1), 1–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  113. Y. Toda, Derived category of coherent sheaves and counting invariants (2014). arXiv:1404.3814

    Google Scholar 

  114. J.-L. Verdier, Des catégories dérivées des catégories abéliennes. Astérisque 239, xii+253 pp. (1997). 1996 With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis

    Google Scholar 

  115. M. Woolf, Nef and effective cones on the moduli space of torsion sheaves on the projective plane (2013). arXiv:1305.1465

    Google Scholar 

  116. B. Xia, The Hilbert scheme of twisted cubics as simple wall-crossing (2016). arXiv:1608.04609

    Google Scholar 

  117. K. Yoshioka, Some remarks on Bridgeland stability conditions on K3 and Enriques surfaces (2016). arXiv:1607.04946

    Google Scholar 

  118. S. Yanagida, K. Yoshioka, Bridgeland’s stabilities on abelian surfaces. Math. Z. 276(1-2), 571–610 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would very much like to thank Benjamin Bakker, Arend Bayer, Aaron Bertram, Izzet Coskun, Jack Huizenga, Daniel Huybrechts, Martí Lahoz, Ciaran Meachan, Paolo Stellari, Yukinobu Toda, and Xiaolei Zhao for very useful discussions and many explanations on the topics of these notes. We are also grateful to Jack Huizenga for sharing a preliminary version of his survey article [60] with us and to the referee for very useful suggestions which improved the readability of these notes. The first author would also like to thank very much the organizers of the two schools for the kind invitation and the excellent atmosphere, and the audience for many comments, critiques, and suggestions for improvement. The second author would like to thank Northeastern University for the hospitality during the writing of this article. This work was partially supported by NSF grant DMS-1523496 and a Presidential Fellowship of the Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Macrì .

Editor information

Editors and Affiliations

Appendix: Background on Derived Categories

Appendix: Background on Derived Categories

This section contains definition and important properties of the bounded derived category \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) for an abelian category \(\mathcal{A}\). Most of the time the category \(\mathcal{A}\) will be the category \(\mathop{\mathrm{Coh}}\nolimits (X)\) of coherent sheaves on a smooth projective variety X. To simplify notation \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (X)\) will be written for \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathop{\mathrm{Coh}}\nolimits (X))\). Derived categories were introduced by Verdier in his thesis under the supervision of Grothendieck. The interested reader can find a detailed account of the theory in [49], the first two chapters of [61] or the original source [114].

Definition 1

  1. (1)

    A complex

    $$\displaystyle{\ldots \rightarrow A^{i-1} \rightarrow A^{i} \rightarrow A^{i+1} \rightarrow \ldots }$$

    is called bounded if A i = 0 for both i ≫ 0 and i ≪ 0.

  2. (2)

    The objects of the category \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) are bounded complexes over \(\mathcal{A}\) and its morphisms are homomorphisms of complexes.

  3. (3)

    A morphism f: AB in \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) is called a quasi isomorphism if the induced morphism of cohomology groups H i(A) → H i(B) is an isomorphism for all integers i.

The bounded derived category of \(\mathcal{A}\) is the localization of \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) by quasi isomorphisms. The exact meaning of this is the next theorem.

Theorem 2 ([61, Theorem 2.10])

There is a category \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) together with a functor \(Q:\mathop{ \mathrm{Kom}}\nolimits ^{b}(\mathcal{A}) \rightarrow \mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) satisfying two properties.

  1. (1)

    The morphism Q( f) is an isomorphism for any quasi-isomorphism f in the category \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) .

  2. (2)

    Any functor \(F:\mathop{ \mathrm{Kom}}\nolimits ^{b}(\mathcal{A}) \rightarrow \mathcal{D}\) satisfying property (i) factors uniquely through Q, i.e., there is a unique (up to natural isomorphism) functor \(G:\mathop{ \mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A}) \rightarrow \mathcal{D}\) such that F is naturally isomorphic to GQ.

In particular, Q identifies objects in \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) and \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\). By the definition of quasi isomorphisms we still have well defined cohomology groups H i(A) for any \(A \in \mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\). The category \(\mathcal{A}\) is equivalent to the full subcategory of \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) consisting of those objects \(A \in \mathcal{A}\) that satisfy H i(A) = 0 for all i ≠ 0. In the next section we will learn that this is the simplest example of what is known as the heart of a bounded t-structure.

Notice, there is the automorphism \([1]:\mathop{ \mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A}) \rightarrow \mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\), where E[1] is defined by E[1]i = E i+1. It simply changes the grading of a complex. Moreover, we define the shift functor [n] = [1]n for any integer n. The following lemma will be used to actually compute homomorphisms in the derived category.

Lemma 3 ([61, Proposition 2.56])

Let \(\mathcal{A}\) be either an abelian category with enough injectives or \(\mathop{\mathrm{Coh}}\nolimits (X)\) for a smooth projective variety X. For any \(A,B \in \mathcal{A}\) and \(i \in \mathbb{Z}\) we have the equality

$$\displaystyle{\mathop{\mathrm{Hom}}\nolimits _{\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})}(A,B[i]) =\mathop{ \mathrm{Ext}}\nolimits ^{i}(A,B).}$$

In contrast to \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) the bounded derived category \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) is not abelian. This lead Verdier and Grothendieck to the notion of a triangulated category which will be explained in the next theorem.

Definition 4

For any morphism f: AB in \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) the cone C( f) is defined by C( f)i = A i+1B i. The differential is given by the matrix

$$\displaystyle{\left (\begin{array}{*{10}c} -d_{A}& 0 \\ f &d_{B} \end{array} \right ).}$$

The inclusion B iA i+1B i leads to a morphism BC( f) and the projection B iA i+1A i+1 leads to a morphism C( f) → A[1].

Definition 5

A sequence of maps FEGF[1] in \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) is called a distinguished triangle if there is a morphism f: AB in \(\mathop{\mathrm{Kom}}\nolimits ^{b}(\mathcal{A})\) and a commutative diagram with vertical isomorphisms in \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) as follows

These distinguished triangles should be viewed as the analogue of exact sequences in an abelian category. If 0 → ABC → 0 is an exact sequence in \(\mathcal{A}\), then ABCA[1] is a distinguished triangle where the map CA[1] is determined by the element in \(\mathop{\mathrm{Hom}}\nolimits (C,A[1]) =\mathop{ \mathrm{Ext}}\nolimits ^{1}(C,A)\) that determines the extension B. The following properties of the derived category are essentially the defining properties of a triangulated category.

Theorem 6 ([49, Chap. IV])

  1. (1)

    Any morphism AB in \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) can be completed to a distinguished triangle ABCA[1].

  2. (2)

    A triangle ABCA[1] is distinguished if and only if the induced triangle BCA[1] → B[1] is distinguished.

  3. (3)

    Assume we have two distinguished triangles with morphisms f and g making the diagram below commutative.

    Then we can find h: CC′ making the whole diagram commutative.

  4. (4)

    Assume we have two morphisms AB and BC. Then together with (1) and (3) we can get a commutative diagram as follows where all rows and columns are distinguished triangles.

The key in property (4) is that the triangle DEFD[1] is actually distinguished. Be aware that contrary to most definitions in category theory the morphism in (3) is not necessarily unique.

Exercise 7

Let ABCA[1] be a distinguished triangle and \(E \in \mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\) be an arbitrary object. Then there are long exact sequences

$$\displaystyle{\ldots \rightarrow \mathop{\mathrm{Hom}}\nolimits (E,C[-1]) \rightarrow \mathop{\mathrm{Hom}}\nolimits (E,A) \rightarrow \mathop{\mathrm{Hom}}\nolimits (E,B) \rightarrow \mathop{\mathrm{Hom}}\nolimits (E,C) \rightarrow \mathop{\mathrm{Hom}}\nolimits (E,A[1]) \rightarrow \ldots }$$

and

$$\displaystyle{\ldots \rightarrow \mathop{\mathrm{Hom}}\nolimits (A[-1],E) \rightarrow \mathop{\mathrm{Hom}}\nolimits (C,E) \rightarrow \mathop{\mathrm{Hom}}\nolimits (B,E) \rightarrow \mathop{\mathrm{Hom}}\nolimits (A,E) \rightarrow \mathop{\mathrm{Hom}}\nolimits (C[-1],E) \rightarrow \ldots }$$

Show the existence of one of the two long exact sequences (their proofs are almost the same).

Exercise 8

Let f: AB be a morphism in \(\mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (\mathcal{A})\). Show that f is an isomorphism if and only if C = 0.

Exercise 9

Prove the corresponding statement to the Five Lemma for derived categories: Assume there is a commutative diagram between distinguished triangles

If two of the morphisms f, g, h are isomorphisms, so is the third one.

We will need the following technical statement in the main text.

Proposition 10 ([33, Proposition 5.4])

Let X be a smooth projective variety and \(E \in \mathop{\mathrm{D}^{\mathrm{b}}}\nolimits (X)\) . If \(\mathop{\mathrm{Ext}}\nolimits ^{i}(E, \mathbb{C}(x)) = 0\) for all xX and i < 0 or \(i> s \in \mathbb{Z}\) . Then E is isomorphic to a complex F of locally free sheaves such that F i = 0 for i > 0 and i < −s.

All triangles coming up in this article are distinguished. Therefore, we will simply drop the word distinguished from the notation.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Macrì, E., Schmidt, B. (2017). Lectures on Bridgeland Stability. In: Brambila Paz, L., Ciliberto, C., Esteves, E., Melo, M., Voisin, C. (eds) Moduli of Curves. Lecture Notes of the Unione Matematica Italiana, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-59486-6_5

Download citation

Publish with us

Policies and ethics