Skip to main content

Indications for Hematopoietic Stem Cell Transplantation in Children

  • Chapter
  • First Online:
Establishing a Hematopoietic Stem Cell Transplantation Unit

Abstract

Hematopoietic stem cell transplantation (HSCT) has significantly modified the natural history of many malignant and non-malignant disorders occurring in pediatric patients. In particular, allogeneic HSCT still represents the treatment of choice for life-threatening conditions, such as primary immune deficiencies or high-risk/relapsed leukemia, or the more effective option to improve the quality of life of patients with hemoglobinopathies. Continuous advances in transplantation outcomes achieved through the past three to four decades have led to the progressive expansion of the indications for HSCT, which is now used with success in several malignant and non-malignant disorders.

Since 2010, more than 30,000 transplants have been reported each year to the European Group for Blood and Marrow Transplantation (EBMT), with a record number of 40,829 HSCTs, in 36,469 patients, reported for the 2014 EBMT activity survey (16,946 allogeneic and 23,883 autologous HSCTs). Of the 656 currently active institutions, 107 (16%) are dedicated pediatric transplant centers and 118 centers (18%) perform HSCTs in both adults and children. These findings indicate that transplantation programs reserved for children must be implemented for those centers willing to take care of the pediatric population of patients. The number of HSCTs increases every year, with a continuous expansion of the use of human leucocyte antigen (HLA)-haploidentical transplantation, a slower increment for unrelated donor HSCTs, and a progressive reduction in cord blood use.

The main indications for allogeneic HSCT in the pediatric age group reported to the EBMT during the 2012 activity survey included acute lymphoblastic leukemia (26%) and primary immune-deficiencies (16%), while solid tumors (66%, in particular neuroblastoma) and lymphomas (15%) were the main indications for autologous HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majhail NS, Farnia SH, Carpenter PA, et al. Indications for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21:1863–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sureda A, Bader P, Cesaro S, et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015;50:1037–56.

    Article  CAS  PubMed  Google Scholar 

  3. Moricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–84.

    Article  CAS  PubMed  Google Scholar 

  4. Balduzzi A, Valsecchi MG, Uderzo C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet. 2005;366:635–42.

    Article  PubMed  Google Scholar 

  5. Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14.

    Article  CAS  PubMed  Google Scholar 

  6. Conter V, Valsecchi MG, Parasole R, et al. Childhood high-risk acute lymphoblastic leukemia in first remission: results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood. 2014;123:1470–8.

    Article  CAS  PubMed  Google Scholar 

  7. Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol. 2009;27:5175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Biondi A, Schrappe M, De Lorenzo P, et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 2012;13:936–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370:240–50.

    Article  CAS  PubMed  Google Scholar 

  10. Koh K, Tomizawa D, Moriya Saito A, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29:290–6.

    Article  CAS  PubMed  Google Scholar 

  11. Mann G, Attarbaschi A, Schrappe M, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: results from the Interfant-99 Study. Blood. 2010;116:2644–50.

    Article  CAS  PubMed  Google Scholar 

  12. Locatelli F, Schrappe M, Bernardo ME, Rutella S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120:2807–16.

    Article  CAS  PubMed  Google Scholar 

  13. Uderzo C, Valsecchi MG, Bacigalupo A, et al. Treatment of childhood acute lymphoblastic leukemia in second remission with allogeneic bone marrow transplantation and chemotherapy: ten-year experience of the Italian Bone Marrow Transplantation Group and the Italian Pediatric Hematology Oncology Association. J Clin Oncol. 1995;13:352–8.

    Article  CAS  PubMed  Google Scholar 

  14. Einsiedel HG, von Stackelberg A, Hartmann R, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol. 2005;23:7942–50.

    Article  PubMed  Google Scholar 

  15. Eapen M, Raetz E, Zhang MJ, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood. 2006;107:4961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dini G, Zecca M, Balduzzi A, et al. No difference in outcome between children and adolescents transplanted for acute lymphoblastic leukemia in second remission. Blood. 2011;118:6683–90.

    Article  CAS  PubMed  Google Scholar 

  17. Borgmann A, von Stackelberg A, Hartmann R, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood. 2003;101:3835–9.

    Article  CAS  PubMed  Google Scholar 

  18. Smith AR, Baker KS, Defor TE, Verneris MR, Wagner JE, Macmillan ML. Hematopoietic cell transplantation for children with acute lymphoblastic leukemia in second complete remission: similar outcomes in recipients of unrelated marrow and umbilical cord blood versus marrow from HLA matched sibling donors. Biol Blood Marrow Transplant. 2009;15:1086–93.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ruggeri A, Michel G, Dalle JH, et al. Impact of pretransplant minimal residual disease after cord blood transplantation for childhood acute lymphoblastic leukemia in remission: an Eurocord, PDWP-EBMT analysis. Leukemia. 2012;26:2455–61.

    Article  CAS  PubMed  Google Scholar 

  20. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120:3187–205.

    Article  CAS  PubMed  Google Scholar 

  21. Klusmann JH, Reinhardt D, Zimmermann M, et al. The role of matched sibling donor allogeneic stem cell transplantation in pediatric high-risk acute myeloid leukemia: results from the AML-BFM 98 study. Haematologica. 2012;97:21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pession A, Masetti R, Rizzari C, et al. Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood. 2013;122:170–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lie SO, Abrahamsson J, Clausen N, et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down’s syndrome: results of NOPHO-AML trials. Br J Haematol. 2003;122:217–25.

    Article  PubMed  Google Scholar 

  24. Woods WG, Neudorf S, Gold S, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood. 2001;97:56–62.

    Article  CAS  PubMed  Google Scholar 

  25. Hasle H. A critical review of which children with acute myeloid leukaemia need stem cell procedures. Br J Haematol. 2014;166:23–33.

    Article  PubMed  Google Scholar 

  26. Creutzig U, Zimmermann M, Bourquin JP, et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood. 2013;122:37–43.

    Article  CAS  PubMed  Google Scholar 

  27. Creutzig U, Zimmemarin M, Dworzak M, et al. Study AML-BFM 2004: improved survival in childhood acute myeloid leukemia without increased toxicity. Blood. 2010;116:83.

    Google Scholar 

  28. Canner J, Alonzo TA, Franklin J, et al. Differences in outcomes of newly diagnosed acute myeloid leukemia for adolescent/young adult and younger patients: a report from the Children’s Oncology Group. Cancer. 2013;119:4162–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tsukimoto I, Tawa A, Horibe K, et al. Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: the AML99 trial from the Japanese Childhood AML Cooperative Study Group. J Clin Oncol. 2009;27:4007–13.

    Article  CAS  PubMed  Google Scholar 

  30. Perel Y, Auvrignon A, Leblanc T, et al. Treatment of childhood acute myeloblastic leukemia: dose intensification improves outcome and maintenance therapy is of no benefit--multicenter studies of the French LAME (Leucemie Aigue Myeloblastique Enfant) Cooperative Group. Leukemia. 2005;19:2082–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gibson BE, Webb DK, Howman AJ, et al. Results of a randomized trial in children with acute myeloid leukaemia: Medical Research Council AML12 trial. Br J Haematol. 2011;155:366–76.

    Article  CAS  PubMed  Google Scholar 

  32. Hasle H, Abrahamsson J, Forestier E, et al. Gemtuzumab ozogamicin as postconsolidation therapy does not prevent relapse in children with AML: results from NOPHO-AML 2004. Blood. 2012;120:978–84.

    Article  CAS  PubMed  Google Scholar 

  33. Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11:543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92:2322–33.

    CAS  PubMed  Google Scholar 

  35. Shiba N, Ichikawa H, Taki T, et al. NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosom Cancer. 2013;52:683–93.

    CAS  PubMed  Google Scholar 

  36. Locatelli F, Masetti R, Rondelli R, et al. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the AIEOP AML-2002/01 study. Bone Marrow Transplant. 2015;50:181–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sander A, Zimmermann M, Dworzak M, et al. Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia. 2010;24:1422–8.

    Article  CAS  PubMed  Google Scholar 

  38. Beier R, Albert MH, Bader P, et al. Allo-SCT using BU, CY and melphalan for children with AML in second CR. Bone Marrow Transplant. 2013;48:651–6.

    Article  CAS  PubMed  Google Scholar 

  39. Dvorak CC, Agarwal R, Dahl GV, Gregory JJ, Feusner JH. Hematopoietic stem cell transplant for pediatric acute promyelocytic leukemia. Biol Blood Marrow Transplant. 2008;14:824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Abla O, Kutny MA, Testi AM, et al. Management of relapsed and refractory childhood acute promyelocytic leukaemia: recommendations from an international expert panel. Br J Haematol. 2016;175(4):588–601.

    Article  PubMed  Google Scholar 

  41. Andolina JR, Neudorf SM, Corey SJ. How I treat childhood CML. Blood. 2012;119:1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woods WG, Barnard DR, Alonzo TA, et al. Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children’s Cancer Group. J Clin Oncol. 2002;20:434–40.

    PubMed  Google Scholar 

  43. Strahm B, Nollke P, Zecca M, et al. Hematopoietic stem cell transplantation for advanced myelodysplastic syndrome in children: results of the EWOG-MDS 98 study. Leukemia. 2011;25:455–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kardos G, Baumann I, Passmore SJ, et al. Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood. 2003;102:1997–2003.

    Article  CAS  PubMed  Google Scholar 

  45. Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125:1083–90.

    Article  CAS  PubMed  Google Scholar 

  46. Claviez A. HSCT for lymphomas in children and adolescents. In: Apperley J, et al., editors. ESH-EBMT handbook on haemopoietic stem cell transplantation. Paris: ESH; 2012. p. 530–41.

    Google Scholar 

  47. Michaux K, Bergeron C, Gandemer V, Mechinaud F, Uyttebroeck A, Bertrand Y. Relapsed or refractory lymphoblastic lymphoma in children: results and analysis of 23 patients in the EORTC 58951 and the LMT96 protocols. Pediatr Blood Cancer. 2016;63:1214–21.

    Article  PubMed  Google Scholar 

  48. Peniket AJ, Ruiz de Elvira MC, Taghipour G, et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplant. 2003;31:667–78.

    Article  CAS  PubMed  Google Scholar 

  49. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet. 2002;359:2065–71.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly KM. Management of children with high-risk Hodgkin lymphoma. Br J Haematol. 2012;157:3–13.

    Article  CAS  PubMed  Google Scholar 

  51. Satwani P, Ahn KW, Carreras J, et al. A prognostic model predicting autologous transplantation outcomes in children, adolescents and young adults with Hodgkin lymphoma. Bone Marrow Transplant. 2015;50:1416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rashidi A, Ebadi M, Cashen AF. Allogeneic hematopoietic stem cell transplantation in Hodgkin lymphoma: a systematic review and meta-analysis. Bone Marrow Transplant. 2016;51:521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Claviez A, Canals C, Dierickx D, et al. Allogeneic hematopoietic stem cell transplantation in children and adolescents with recurrent and refractory Hodgkin lymphoma: an analysis of the European Group for Blood and Marrow Transplantation. Blood. 2009;114:2060–7.

    Article  CAS  PubMed  Google Scholar 

  54. Raiola A, Dominietto A, Varaldo R, et al. Unmanipulated haploidentical BMT following non-myeloablative conditioning and post-transplantation CY for advanced Hodgkin’s lymphoma. Bone Marrow Transplant. 2014;49:190–4.

    Article  CAS  PubMed  Google Scholar 

  55. Gerrard M, Cairo MS, Weston C, et al. Excellent survival following two courses of COPAD chemotherapy in children and adolescents with resected localized B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Br J Haematol. 2008;141:840–7.

    Article  CAS  PubMed  Google Scholar 

  56. Attarbaschi A, Dworzak M, Steiner M, et al. Outcome of children with primary resistant or relapsed non-Hodgkin lymphoma and mature B-cell leukemia after intensive first-line treatment: a population-based analysis of the Austrian Cooperative Study Group. Pediatr Blood Cancer. 2005;44:70–6.

    Article  PubMed  Google Scholar 

  57. Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med. 1995;333:1540–5.

    Article  CAS  PubMed  Google Scholar 

  58. Gross TG, Hale GA, He W, et al. Hematopoietic stem cell transplantation for refractory or recurrent non-Hodgkin lymphoma in children and adolescents. Biol Blood Marrow Transplant. 2010;16:223–30.

    Article  PubMed  Google Scholar 

  59. Satwani P, Jin Z, Martin PL, et al. Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma. Leukemia. 2015;29:448–55.

    Article  CAS  PubMed  Google Scholar 

  60. Attarbaschi A, Carraro E, Abla O, et al. Non-Hodgkin’s lymphoma and pre-existing conditions: spectrum, clinical characteristics and outcome in 213 children and adolescents. Haematologica. 2016;101(12):1581–91.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Admiraal R, van Kesteren C, der Zijde CM, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015;2:e194–203.

    Article  PubMed  Google Scholar 

  62. Pai SY, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371:434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang E, Gennery A. Hematopoietic stem cell transplantation for primary immunodeficiencies. Hematol Oncol Clin North Am. 2014;28:1157–70.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dvorak CC, Hassan A, Slatter MA, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134:935–943.e915.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bertaina A, Merli P, Rutella S, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124:822–6.

    Article  CAS  PubMed  Google Scholar 

  66. Gennery AR, Slatter MA, Grandin L, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126:602–10.e1–11.

    Article  PubMed  Google Scholar 

  67. Hussein AA, Al-Zaben A, Ghatasheh L, et al. Risk adopted allogeneic hematopoietic stem cell transplantation using a reduced intensity regimen for children with thalassemia major. Pediatr Blood Cancer. 2013;60:1345–9.

    Article  PubMed  Google Scholar 

  68. Locatelli F, Kabbara N, Ruggeri A, et al. Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling. Blood. 2013;122:1072–8.

    Article  CAS  PubMed  Google Scholar 

  69. Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014;99:811–20.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lucarelli G, Galimberti M, Polchi P, et al. Marrow transplantation in patients with thalassemia responsive to iron chelation therapy. N Engl J Med. 1993;329:840–4.

    Article  CAS  PubMed  Google Scholar 

  71. Baronciani D, Angelucci E, Potschger U, et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant. 2016;51:536–41.

    Article  CAS  PubMed  Google Scholar 

  72. Fleischhauer K, Locatelli F, Zecca M, et al. Graft rejection after unrelated donor hematopoietic stem cell transplantation for thalassemia is associated with nonpermissive HLA-DPB1 disparity in host-versus-graft direction. Blood. 2006;107:2984–92.

    Article  CAS  PubMed  Google Scholar 

  73. Ruggeri A, Eapen M, Scaravadou A, et al. Umbilical cord blood transplantation for children with thalassemia and sickle cell disease. Biol Blood Marrow Transplant. 2011;17:1375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Anurathapan U, Hongeng S, Pakakasama S, et al. Hematopoietic stem cell transplantation for homozygous beta-thalassemia and beta-thalassemia/hemoglobin E patients from haploidentical donors. Bone Marrow Transplant. 2016;51:813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gluckman E. Allogeneic transplantation strategies including haploidentical transplantation in sickle cell disease. Hematology Am Soc Hematol Educ Program. 2013;2013:370–6.

    PubMed  Google Scholar 

  76. Andreani M, Testi M, Gaziev J, et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica. 2011;96:128–33.

    Article  PubMed  Google Scholar 

  77. Samarasinghe S, Steward C, Hiwarkar P, et al. Excellent outcome of matched unrelated donor transplantation in paediatric aplastic anaemia following failure with immunosuppressive therapy: a United Kingdom multicentre retrospective experience. Br J Haematol. 2012;157:339–46.

    Article  CAS  PubMed  Google Scholar 

  78. Choi YB, Yi ES, Lee JW, Sung KW, Koo HH, Yoo KH. Immunosuppressive therapy versus alternative donor hematopoietic stem cell transplantation for children with severe aplastic anemia who lack an HLA-matched familial donor. Bone Marrow Transplant. 2016;52(1):47–52.

    Article  PubMed  Google Scholar 

  79. Dufour C, Veys P, Carraro E, et al. Similar outcome of upfront-unrelated and matched sibling stem cell transplantation in idiopathic paediatric aplastic anaemia. A study on behalf of the UK Paediatric BMT Working Party, Paediatric Diseases Working Party and Severe Aplastic Anaemia Working Party of EBMT. Br J Haematol. 2015;171:585–94.

    Article  CAS  PubMed  Google Scholar 

  80. Peffault de Latour R, Rocha V, Socie G. Cord blood transplantation in aplastic anemia. Bone Marrow Transplant. 2013;48:201–2.

    Article  CAS  PubMed  Google Scholar 

  81. Clay J, Kulasekararaj AG, Potter V, et al. Nonmyeloablative peripheral blood haploidentical stem cell transplantation for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2014;20:1711–6.

    Article  PubMed  Google Scholar 

  82. Peffault de Latour R, Porcher R, Dalle JH, et al. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the EBMT experience. Blood. 2013;122(26):4279–86.

    Article  CAS  PubMed  Google Scholar 

  83. Fagioli F, Quarello P, Zecca M, et al. Haematopoietic stem cell transplantation for Diamond Blackfan anaemia: a report from the Italian Association of Paediatric Haematology and Oncology Registry. Br J Haematol. 2014;165:673–81.

    Article  PubMed  Google Scholar 

  84. Lipton JM, Atsidaftos E, Zyskind I, Vlachos A. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer. 2006;46:558–64.

    Article  PubMed  Google Scholar 

  85. Fioredda F, Iacobelli S, van Biezen A, et al. Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood. 2015;126:1885–92; quiz 1970.

    Article  CAS  PubMed  Google Scholar 

  86. Mahadeo KM, Tewari P, Parikh SH, et al. Durable engraftment and correction of hematological abnormalities in children with congenital amegakaryocytic thrombocytopenia following myeloablative umbilical cord blood transplantation. Pediatr Transplant. 2015;19:753–7.

    Article  CAS  PubMed  Google Scholar 

  87. Chiesa R, Wynn RF, Veys P. Haematopoietic stem cell transplantation in inborn errors of metabolism. Curr Opin Hematol. 2016;23(6):530–5.

    Article  CAS  PubMed  Google Scholar 

  88. Aldenhoven M, Wynn RF, Orchard PJ, et al. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study. Blood. 2015;125:2164–72.

    Article  CAS  PubMed  Google Scholar 

  89. Gratwohl A, Baldomero H, Demirer T, Rosti G, Dini G, Ladenstein R, Urbano-Ispizua A. Hematopoetic stem cell transplantation for solid tumors in Europe. Ann Oncol. 2004;15:653–60.

    Article  CAS  PubMed  Google Scholar 

  90. Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group study. J Clin Oncol. 2009;27:1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ladenstein R, Pötschger U. High-dose chemotherapy and HSCT in children and adolescents with solid tumours in Europe. In: Apperley J, et al., editors. The EBMT handbook. Paris: ESH; 2012. p. 598–611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Locatelli M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Locatelli, F., Strocchio, L. (2018). Indications for Hematopoietic Stem Cell Transplantation in Children. In: Gluckman, É., Niederwieser, D., Aljurf, M. (eds) Establishing a Hematopoietic Stem Cell Transplantation Unit . Springer, Cham. https://doi.org/10.1007/978-3-319-59358-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59358-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59356-2

  • Online ISBN: 978-3-319-59358-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics