Skip to main content

Biomimetic Navigation Using CBR

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

  • 2970 Accesses

Abstract

Biologically inspired design consists in the creation of technological systems using as starting or inspirational point biological systems. Indeed, it has been used widely in robotics in different areas, such as mechanics, coordination or navigation. For example, in robot navigation, biomimetic algorithms can be specially useful in certain circumstances, such as when a robot needs to interacts closely with users. Using biomimetic navigation robot movements would be more similar to human ones but maintaining some basic navigation factors such as the safety. It is important in systems such as assistive systems in which human and robot control can be switch or combined –depending on the kind of system– to obtain the final command. Thus, in these systems interaction is very close to the user and it is advisable to make robot commands as similar as possible to the user ones. Otherwise, the user could even reject robot assistance depending on the disagreement between user and robot commands to reach a destiny. This disagreement provokes user’s frustration and stress and, in extreme, assistive system rejection. In this paper we propose a biomimetic navigation algorithm based on Case-Based Reasoning that learns from real traces –performed by volunteers– in order to achieve robot navigation as close as possible to the human one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Collaboration under the framework New technologies in rehabilitation: walking aids: a pilot study with robotic walker.

References

  1. Abramson, M., Mittu, R.: Learning and coordination: an overview. In: 2011 International Conference on Collaboration Technologies and Systems (CTS), pp. 343–350 (2011)

    Google Scholar 

  2. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  3. Auslander, B., Apker, T., Aha, D.W.: Case-based parameter selection for plans: coordinating autonomous vehicle teams. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS, vol. 8765, pp. 32–47. Springer, Cham (2014). doi:10.1007/978-3-319-11209-1_4

    Google Scholar 

  4. Begum, S., Ahmed, M., Funk, P., Xiong, N., Folke, M.: Case-based reasoning systems in the health sciences: a survey of recent trends and developments. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(4), 421–434 (2011)

    Article  Google Scholar 

  5. Bruemmer, D.J., Few, D.A., Boring, R.L., Marble, J.L., Walton, M.C., Nielsen, C.W.: Shared understanding for collaborative control. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 35(4), 494–504 (2005)

    Article  Google Scholar 

  6. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robot. Auton. Syst. 30(53), 133–153 (2000)

    Article  Google Scholar 

  7. Franz, M.O., Stürzl, W., Hübner, W., Mallot, H.A.: A robot system for biomimetic navigation-from snapshots to metric embeddings of view graphs. In: Jefferies, M.E., Yeap, W.K. (eds.) Robotics and Cognitive Approaches to Spatial Mapping, vol. 38, pp. 297–314. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Hodál, J., Dvořák, J.: Using case-based reasoning for mobile robot path planning. Eng. Mech. 15(3), 181–191 (2008)

    Google Scholar 

  9. Hoy, M., Matveev, A.S., Savkin, A.V.: Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey. Robotica 33(3), 463–497 (2015)

    Article  Google Scholar 

  10. Kruusmaa, M.: Global navigation in dynamic environments using case-based reasoning. Auton. Robots 14(1), 71–91 (2003)

    Article  MATH  Google Scholar 

  11. Li, Y., Li, S., Ge, Y.: A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments. Neurocomputing 104, 170–179 (2013)

    Article  Google Scholar 

  12. Mantaras, L.D., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., et al.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng. Rev. 20(3), 215–240 (2005)

    Article  Google Scholar 

  13. Masár, M., Budinská, I.: Robot coordination based on biologically inspired methods. Adv. Mater. Res. 664, 891–896 (2003). Trans Tech Publications

    Article  Google Scholar 

  14. Milford, M.J., Wyeth, G.F.: Mapping a suburb with a single camera using a biologically inspired slam system. IEEE Trans. Robot. 24(5), 1038–1053 (2008)

    Article  Google Scholar 

  15. Mondada, F., Gambardella, A.L., Floreano, A.D., Dorigo, A.M.: Swarm-bots: physical interactions in collective robotics. Robot. Autom. Mag. 12(2), 21–28 (2005)

    Article  Google Scholar 

  16. Nichols, E., McDaid, L.J., Siddique, N.: Biologically inspired snn for robot control. IEEE Trans. Cybern. 43(1), 115–128 (2013)

    Article  Google Scholar 

  17. Parikh, S.P., Grassi, V., Kumar, V., Okamoto, J.J.: Usability study of a control framework for an intelligent wheelchair. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 4745–4750. IEEE (2005)

    Google Scholar 

  18. Saeedi, S., Paull, L., Trentini, M., Li, H.: Neural network-based multiple robot simultaneous localization and mapping. IEEE Trans. Neural Netw. 22(12), 2376–2387 (2011)

    Article  Google Scholar 

  19. Savkin, A.V., Wang, C.: A simple biologically inspired algorithm for collision-free navigation of a unicycle-like robot in dynamic environments with moving obstacles. Robotica 31(6), 993–1001 (2013)

    Article  Google Scholar 

  20. Sharaf-El-Deen, D.A., Moawad, I.F., Khalifa, M.: A new hybrid case-based reasoning approach for medical diagnosis systems. J. Med. Syst. 38(2), 9 (2014)

    Article  Google Scholar 

  21. Urdiales, C.: Collaborative Assistive Robot for Mobility Enhancement (CARMEN): The Bare Necessities Assisted Wheelchair Navigation and Beyond. Springer, Berlin (2012)

    Book  Google Scholar 

  22. Urdiales, C., Perez, E.J., Peinado, G., Fdez-Carmona, M., Peula, J.M., Annicchiarico, R., Sandoval, F., Caltagirone, C.: On the construction of a skill-based wheelchair navigation profile. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 917–927 (2013)

    Article  Google Scholar 

  23. Urdiales, C., Peula, J.M., Fdez-Carmona, M., Barrué, C., Pérez, E.J., Sánchez-Tato, I., Del Toro, J., Galluppi, F., Cortés, U., Annichiaricco, R., et al.: A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation. Auton. Robots 30(2), 179–197 (2011)

    Article  Google Scholar 

  24. Urdiales, C., Peula, J.M., Fernández-Carmona, M., Sandoval, F.: Learning-based adaptation for personalized mobility assistance. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 329–342. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39056-2_24

    Chapter  Google Scholar 

  25. Ward, T.A., Rezadad, M., Fearday, C.J., Viyapuri, R.: A review of biomimetic air vehicle research: 1984–2014. Int. J. Micro Air Veh. 7(3), 375–394 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (MEC), Project. TEC2011-29106, Project no. TEC2014-56256-C2-1-P, by the Junta de Andalucia project No. TIC-7839, Hospital Regional Universitario of Malaga and Fondazione Santa Lucia of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Peula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Peula, J.M., Ballesteros, J., Urdiales, C., Sandoval, F. (2017). Biomimetic Navigation Using CBR. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics