Skip to main content

Structural Effects of Glue Application in Spiders—What Can We Learn from Silk Anchors?

  • Chapter
  • First Online:
Bio-inspired Structured Adhesives

Part of the book series: Biologically-Inspired Systems ((BISY,volume 9))

Abstract

Silk is a key innovation in spiders that equally fascinates biologists and material scientists. The anchoring of silken threads is a critical, yet poorly understood aspect of web-building—one that could lead to the development of advanced adhesives. To anchor silk, most spiders produce a structurally unique and rather unexplored bio-adhesive: the two-compound piriform gland secretion. The secretion is spun into elaborate patterns, so called attachment discs that anchor silken threads to substrates. The piriform gland secretion is a glue-coated fibre that combines the high toughness of silk with strong adhesion, even to highly repellent surfaces like Teflon. The glue is used highly economically, dries within less than a second after extrusion and can remain stable for years. Its hierarchical organization, discontinuous contact area and the embedding of compliant fibres may explain the high adhesive performance and flaw tolerance of such a composite product coming from a single, rather simple, type of silk glands. These principles contradict, in many regards, the paradigms of adhesives design and application, like aimed homogeneity of the bonding. Understanding the function of silk anchors may therefore trigger the development of novel industrial adhesives with embedded fibres, and methods of gaining higher bonding strength with less material consumption by smart glue application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Gosline, M.W. Denny, M.E. DeMont, Spider silk as rubber. Nature 309(5968), 551–552 (1984)

    Article  Google Scholar 

  2. F. Vollrath, D.P. Knight, Liquid crystalline spinning of spider silk. Nature 410(6828), 541–548 (2001)

    Article  Google Scholar 

  3. I. Agnarsson, M. Kuntner, T.A. Blackledge, Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS ONE 5(9), e11234 (2010)

    Article  Google Scholar 

  4. R.F. Foelix, Biology of Spiders, 3rd edn. (Oxford University Press, New York, 2011)

    Google Scholar 

  5. C. Apstein, Bau und Funktion der Spinndrüsen der Araneida. Arch. Naturg. 55, 29–74 (1889)

    Google Scholar 

  6. W.G. Eberhard, Possible functional significance of spigot placement on the spinnerets of spiders. J. Arachnol. 38(3), 407–414 (2010)

    Article  Google Scholar 

  7. T.A. Blackledge, C.Y. Hayashi, Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209(13), 2452–2461 (2006)

    Article  Google Scholar 

  8. J. Kovoor, L. Zylberberg, Fine-structural aspects of silk secretion in a spider (Araneus diadematus). 1. Elaboration in the pyriform glands. Tissue Cell 12(3), 547–556 (1980)

    Article  Google Scholar 

  9. J.O. Wolff, I. Grawe, M. Wirth, A. Karstedt, S.N. Gorb, Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11(12), 2394–2403 (2015)

    Article  Google Scholar 

  10. J.A. Murphy, M.J. Roberts, Spider Families of the World and Their Spinnerets (British Arachnological Society, York, 2015)

    Google Scholar 

  11. F. Vollrath, P. Selden, The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38, 819–846 (2007)

    Article  Google Scholar 

  12. H.M. Whitney, W. Federle, Biomechanics of plant-insect interactions. Curr. Opin. Plant Biol. 16(1), 105–111 (2013)

    Article  Google Scholar 

  13. I. Grawe, J.O. Wolff, S.N. Gorb, Composition and substrate-dependent strength of the silken attachment discs in spiders. J. R. Soc. Interface 11(98), 1742–5662 (2014)

    Article  Google Scholar 

  14. V. Sahni, J. Harris, T.A. Blackledge, A. Dhinojwala, Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat. Commun. 3, 1106 (2012)

    Article  Google Scholar 

  15. K. Kendall, Thin-film peeling—elastic term. J. Phys. D Appl. Phys. 8(13), 1449–1452 (1975)

    Article  Google Scholar 

  16. N.M. Pugno, The theory of multiple peeling. Int. J. Fract. 171(2), 185–193 (2011)

    Article  Google Scholar 

  17. F. Bosia, S. Colella, V. Mattoli, B. Mazzolai, N.M. Pugno, Hierarchical multiple peeling simulations. RSC Adv. 4(48), 25447–25452 (2014)

    Article  Google Scholar 

  18. P. Poza, J. Perez-Rigueiro, M. Elices, J. Llorca, Fractographic analysis of silkworm and spider silk. Eng. Fract. Mech. 69(9), 1035–1048 (2002)

    Article  Google Scholar 

  19. P. Jiang, H. Liu, C. Wang, L. Wu, J. Huang, C. Guo, Tensile behavior and morphology of differently degummed silkworm (Bombyx mori) cocoon silk fibres. Mater. Lett. 60(7), 919–925 (2006)

    Article  Google Scholar 

  20. M.S. Engster, Studies on silk secretion in the Trichoptera (F. Limnephilidae). Cell Tissue Res. 169(1), 77–92 (1976)

    Article  Google Scholar 

  21. T. Hatano, T. Nagashima, The secretion process of liquid silk with nanopillar structures from Stenopsyche marmorata (Trichoptera: Stenopsychidae). Sci. Rep. 5, 9237 (2015)

    Article  Google Scholar 

  22. J.M. Palmer, F.A. Coyle, F.W. Harrison, Structure and cytochemistry of the silk glands of the mygalomorph spider Antrodiaetus unicolor (Araneae, Antrodiaetidae). J. Morphol. 174(3), 269–274 (1982)

    Article  Google Scholar 

  23. B.O. Swanson, S.P. Anderson, C. DiGiovine, R.N. Ross, J.P. Dorsey, The evolution of complex biomaterial performance: the case of spider silk. Integr. Comp. Biol. 49(1), 21–31 (2009)

    Article  Google Scholar 

  24. T.A. Blackledge, J. Pérez-Rigueiro, G.R. Plaza, B. Perea, A. Navarro, G.V. Guinea, M. Elices, Sequential origin in the high performance properties of orb spider dragline silk. Sci. Rep. 2, 782 (2012)

    Google Scholar 

  25. J.O. Wolff, S.N. Gorb, Attachment Structures and Adhesive Secretions in Arachnids (Springer, Cham, 2016)

    Book  Google Scholar 

  26. Y. Termonia, Molecular modeling of spider silk elasticity. Macromolecules 27(25), 7378–7381 (1994)

    Article  Google Scholar 

  27. D. Porter, F. Vollrath, Z. Shao, Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 16(2), 199–206 (2005)

    Article  Google Scholar 

  28. C. Fant, K. Sott, H. Elwing, F. Hook, Adsorption behavior and enzymatically or chemically induced cross-linking of a mussel adhesive protein. Biofouling 16(2–4), 119–132 (2000)

    Article  Google Scholar 

  29. M. Wiegemann, B. Watermann, Peculiarities of barnacle adhesive cured on non-stick surfaces. J. Adhes. Sci. Technol. 17(14), 1957–1977 (2003)

    Article  Google Scholar 

  30. M.J. Sever, J.T. Weisser, J. Monahan, S. Srinivasan, J.J. Wilker, Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew. Chem. 116(4), 454–456 (2004)

    Article  Google Scholar 

  31. J. Pérez-Rigueiro, C. Viney, J. Llorca, M. Elices, Mechanical properties of single-brin silkworm silk. J. Appl. Polym. Sci. 75(10), 1270–1277 (2000)

    Article  Google Scholar 

  32. J. Pérez-Rigueiro, M. Elices, J. Llorca, C. Viney, Effect of degumming on the tensile properties of silkworm (Bombyx mori) silk fiber. J. Appl. Polym. Sci. 84(7), 1431–1437 (2002)

    Article  Google Scholar 

  33. J.A. Coddington, Spinneret silk spigot morphology: evidence for the monophyly of orbweaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae plus Nesticidae. J. Arachnol. 17(1), 71–95 (1989)

    Google Scholar 

  34. L. Yu, J.A. Coddington, Ontogenetic changes in the spinning fields of Nuctenea cornuta and Neoscona theisi (Araneae, Araneidae). J. Arachnol. 18(3), 331–345 (1990)

    Google Scholar 

  35. P. Dolejš, J. Buchar, L. Kubcová, J. Smrž, Developmental changes in the spinning apparatus over the life cycle of wolf spiders (Araneae: Lycosidae). Invertebr. Biol. 133(3), 281–297 (2014)

    Article  Google Scholar 

  36. J.O. Wolff, M.E. Herberstein, 3D-printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations. J. R. Soc. Interface 14(127), 20160783 (2017).

    Google Scholar 

  37. S.N. Gorb, M. Varenberg, Mushroom-shaped geometry of contact elements in biological adhesive systems. J. Adhesion Sci. Technol. 21(12–13), 1175–1183 (2007)

    Article  Google Scholar 

  38. Pugno N, Vanzo J, Cranford S, Buehler M, Simultaneous material and structural optimization in the spider web attachment disk, in Atti del XX Cong. Nazionale dell’ Associazione Italiana di Meccanica Teorica ed Applicata, Minisymposium Micro- or Nano-mechanics, Bologna, Italy, 12–15 Settembre 2011

    Google Scholar 

  39. N.M. Pugno, S.W. Cranford, M.J. Buehler, Synergetic material and structure optimization yields robust spider web anchorages. Small 9(16), 2747–2756 (2013)

    Article  Google Scholar 

  40. L. Brely, F. Bosia, N.M. Pugno, Numerical implementation of multiple peeling theory and its application to spider web anchorages. Interface Focus 5(1), 20140051 (2015)

    Article  Google Scholar 

  41. D. Jain, V. Sahni, A. Dhinojwala, Synthetic adhesive attachment discs inspired by spider’s pyriform silk architecture. J. Polym. Sci. B Polym. Phys. 52, 553–560 (2014)

    Article  Google Scholar 

  42. S. Argintean, J. Chen, M. Kim, A.M.F. Moore, Resilient silk captures prey in black widow cobwebs. Appl. Phys. A 82, 235–241 (2006)

    Article  Google Scholar 

  43. W.G. Eberhard, Physical properties of sticky spirals and their connections: sliding connections in orb webs. J. Nat. Hist. 10(5), 481–488 (1976)

    Article  Google Scholar 

  44. S.N. Gorb, M.A. Landolfa, F.G. Barth, Dragline-associated behaviour of the orb web spider Nephila clavipes (Araneioidea, Tetragnathidae). J. Zool. Lond. 244, 323–330 (1998)

    Article  Google Scholar 

  45. S.W. Cranford, N.M. Pugno, M.J. Buehler, Silk and web synergy: the merging of material and structural performance, in Biotechnology of Silk. Biologically-Inspired Systems, vol. 5, ed. by T. Asakura, T. Miller (Springer, Dordrecht, 2014), pp. 219–268

    Google Scholar 

  46. L. Heepe, A.E. Kovalev, A.E. Filippov, S.N. Gorb, Adhesion failure at 180 000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys. Rev. Lett. 111(10), 104301 (2013)

    Article  Google Scholar 

  47. L. Afferrante, G. Carbone, G. Demelio, N. Pugno, Adhesion of elastic thin films: double peeling of tapes versus axisymmetric peeling of membranes. Tribol. Lett. 52(3), 439–447 (2013)

    Article  Google Scholar 

  48. Z. Qin, M.J. Buehler, Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013)

    Google Scholar 

  49. K.W. Desmond, N.A. Zacchia, J.H. Waite, M.T. Valentine, Dynamics of mussel plaque detachment. Soft Matter 11(34), 6832–6839 (2015)

    Article  Google Scholar 

  50. V. Sahni, T.A. Blackledge, A. Dhinojwala, Viscoelastic solids explain spider web stickiness. Nat. Commun. 1, 19 (2010)

    Article  Google Scholar 

  51. C. Dahlquist, An investigation into the nature of tack. Adhes. Age 2(10), 25–29 (1959)

    Google Scholar 

  52. C. Creton, Pressure-sensitive adhesives: an introductory course. MRS Bull. 28(06), 434–439 (2003)

    Article  Google Scholar 

  53. A. Tamarin, P. Lewis, J. Askey, The structure and formation of the byssus attachment plaque in Mytilus. J. Morphol. 149(2), 199–221 (1976)

    Article  Google Scholar 

  54. H.G. Silverman, F.F. Roberto, Understanding marine mussel adhesion. Mar. Biotechnol. 9(6), 661–681 (2007)

    Article  Google Scholar 

  55. V.C. Li, On engineered cementitious composites (ECC). J. Adv. Concr. Technol. 1(3), 215–230 (2003)

    Article  Google Scholar 

  56. E. Blasingame, T. Tuton-Blasingame, L. Larkin, A.M. Falick, L. Zhao, J. Fong, V. Vaidyanathan, A. Visperas, P. Geurts, X.Y. Hu, C. La Mattina, C. Vierra, Pyriform Spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J. Biol. Chem. 284(42), 29097–29108 (2009)

    Article  Google Scholar 

  57. J.O. Wolff, M. Řezáč, T. Krejčı́, S.N. Gorb, Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae). J. Exp. Biol. In press (2017)

    Google Scholar 

  58. A. Sponner, W. Vater, S. Monajembashi, E. Unger, F. Grosse, K. Weisshart, Composition and hierarchical organisation of a spider silk. PLoS ONE 2(10), e998 (2007)

    Article  Google Scholar 

  59. C.P. Brown, J. MacLeod, H. Amenitsch, F. Cacho-Nerin, H.S. Gill, A.J. Price, E. Traversa, S. Licoccia, F. Rosei, The critical role of water in spider silk and its consequence for protein mechanics. Nanoscale 3(9), 3805–3811 (2011)

    Article  Google Scholar 

  60. J. Kovoor, Etude histochimique et cytologique des glandes sericigenes de quelques Argiopidae. Annales des Sciences naturelle Zoologie and biologie animale 12ème série 14, 1–40 (1972)

    Google Scholar 

  61. S.O. Andersen, Amino acid composition of spider silks. Comp. Biochem. Physiol. 35, 705–711 (1970)

    Article  Google Scholar 

  62. R.W. Work, Web components associated with the major ampullate silk fibers of orb-web-building spiders. Trans. Am. Microsc. Soc. 100(1), 1–20 (1981)

    Article  Google Scholar 

  63. P. Geurts, L. Zhao, Y. Hsia, E. Gnesa, S. Tang, F. Jeffery, C. La Mattina, A. Franz, L. Larkin, C. Vierra, Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11(12), 3495–3503 (2010)

    Article  Google Scholar 

  64. D.J. Perry, D. Bittencourt, J. Siltberg-Liberles, E.L. Rech, R.V. Lewis, Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11(11), 3000–3006 (2010)

    Article  Google Scholar 

  65. C.Y. Hayashi, N.H. Shipley, R.V. Lewis, Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24(2), 271–275 (1999)

    Article  Google Scholar 

  66. A.H. Simmons, C.A. Michal, L.W. Jelinski, Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271(5245), 84–87 (1996)

    Article  Google Scholar 

  67. J. Gosline, P. Guerette, C. Ortlepp, K. Savage, The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202(23), 3295–3303 (1999)

    Google Scholar 

  68. S. Keten, M.J. Buehler, Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7(53), 1709–1721 (2010)

    Article  Google Scholar 

  69. S. Rauscher, S. Baud, M. Miao, F.W. Keeley, R. Pomès, Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14(11), 1667–1676 (2006)

    Article  Google Scholar 

  70. R.C. Chaw, C.A. Saski, C.Y. Hayashi, Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization. Insect Biochem. Mol. Biol. 81, 80–90 (2017).

    Google Scholar 

  71. Y. Liu, Z. Shao, F. Vollrath, Elasticity of spider silks. Biomacromolecules 9(7), 1782–1786 (2008)

    Article  Google Scholar 

  72. T. Lefèvre, S. Boudreault, C. Cloutier, M. Pézolet, Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405(1), 238–253 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Mariella Herberstein, Joshua Madin and Stanislav Gorb for comments on this manuscript. This study was founded by a scholarship of the German Merit Foundation (Studienstiftung des Deutschen Volkes) and a Macquarie Research Fellowship of Macquarie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas O. Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wolff, J.O. (2017). Structural Effects of Glue Application in Spiders—What Can We Learn from Silk Anchors?. In: Heepe, L., Xue, L., Gorb, S. (eds) Bio-inspired Structured Adhesives. Biologically-Inspired Systems, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-59114-8_5

Download citation

Publish with us

Policies and ethics