Skip to main content

Impact of Ambient Humidity on Traction Forces in Ladybird Beetles (Coccinella septempunctata)

  • Chapter
  • First Online:
Bio-inspired Structured Adhesives

Part of the book series: Biologically-Inspired Systems ((BISY,volume 9))

Abstract

Many insects possess hairy adhesive foot pads, supplemented with a tarsal secretion, which allow them to securely and reversibly attach to various kinds of natural substrates, also under complex environmental conditions. Conditions such as ambient temperature and humidity have been shown to influence the attachment ability of the dry adhesive foot pads in spiders and geckos. For insects, however, the influence of the environment on attachment ability is lacking. In the present study, we therefore studied the attachment ability of the seven-spotted ladybird beetle (Coccinella septempunctata) at different humidities by traction force experiments. Our results indicate an optimal range of relative humidity with maximal traction forces. At both low (15%) and high (99%) relative humidity a decrease of attachment ability was found. At 60% humidity, the highest attachment forces were revealed. This relationship was found both in female and male beetles, despite of a deviating structure of adhesive setae and a significant difference in forces between sexes. These findings demonstrate that humidity similarly affects the function of both dry and wet adhesive pads, although both types of adhesive systems (wet and dry) are supposed to be based on different physical interactions (capillarity versus van der Waals forces).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.N. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic Publishers, Dordrecht, 2001)

    Google Scholar 

  2. S.N. Gorb, R.G. Beutel, Naturwissenschaften 88, 530 (2001). doi:10.1007/s00114-001-0274-y

    Article  Google Scholar 

  3. S.N. Gorb et al., Integr. Comp. Biol. 42, 1127 (2002)

    Article  Google Scholar 

  4. W.J. Federle, J. Exp. Biol. 209, 2611 (2006)

    Article  Google Scholar 

  5. D. Voigt, J.M. Schuppert, S. Dattinger, S.N. Gorb, J. Insect Physiol. 54, 765 (2008)

    Article  Google Scholar 

  6. E.V. Gorb, N. Hosoda, C. Miksch, S.N. Gorb, J. R. Soc. Interface 7, 1571 (2010)

    Article  Google Scholar 

  7. J.O. Wolff, S.N. Gorb, J. Exp. Biol. 215, 179 (2012)

    Article  Google Scholar 

  8. B. Prüm et al., Acta Biomater. 9, 6360 (2013)

    Article  Google Scholar 

  9. C. Grohmann, A. Blankenstein, S. Koops, S.N. Gorb, J. Exp. Biol. 217, 4213 (2014)

    Article  Google Scholar 

  10. G. Huber et al., Proc. Natl. Acad. Sci. U. S. A. 102, 16293 (2005)

    Article  Google Scholar 

  11. P.H. Niewiarowski et al., PLoS ONE 3, e2192 (2008)

    Article  Google Scholar 

  12. J.B. Puthoff, M.S. Prowse, M. Wilkinson, K. Autumn, J. Exp. Biol. 213, 3699 (2010)

    Article  Google Scholar 

  13. M.S. Prowse et al., Acta Biomater. 7, 733 (2011)

    Article  Google Scholar 

  14. J.O. Wolff, S.N. Gorb, Proc. R. Soc. Lond. Ser. B 279, 139 (2011)

    Article  Google Scholar 

  15. D.N. Ferro, E.E. Southwick, Environ. Entomol. 13, 926 (1984)

    Article  Google Scholar 

  16. P.B. Miranda, L. Xu, Y.R. Shen, M. Salmeron, Phys. Rev. Lett. 81, 5876 (1998)

    Article  Google Scholar 

  17. D.B. Asay, S.H. Kim, J. Phys. Chem. B 109, 16760 (2005)

    Article  Google Scholar 

  18. M. Binggeli, C.M. Mate, Appl. Phys. Lett. 65, 415 (1994)

    Article  Google Scholar 

  19. X. Xiao, L. Qian, Langmuir 16, 8153 (2000)

    Article  Google Scholar 

  20. J. Jang, G.C. Schatz, M.A. Ratner, J. Chem. Phys. 120, 1157 (2004)

    Article  Google Scholar 

  21. D.B. Asay, S.H. Kim, J. Chem. Phys. 124, 174712 (2006)

    Article  Google Scholar 

  22. S. Ishii, Appl. Entomol. Zool. 22, 222 (1987)

    Google Scholar 

  23. T. Eisner, D.J. Anesnansley, Proc. Natl. Acad. Sci. U. S. A. 97, 6568 (2000)

    Article  Google Scholar 

  24. W. Vötsch et al., Insect Biochem. Mol. Biol. 32, 1605 (2002)

    Article  Google Scholar 

  25. M.G. Langer, J.P. Ruppersberg, S.N. Gorb, Proc. R. Soc. Lond. Ser. B 271, 2209 (2004)

    Article  Google Scholar 

  26. S.F. Geiselhardt, S. Geiselhardt, K. Peschke, Chemoecology 19, 185 (2009)

    Article  Google Scholar 

  27. S.F. Geiselhardt et al., J. Insect Physiol. 56, 398 (2010)

    Article  Google Scholar 

  28. J.-H. Dirks, C.F. Clemente, W.J. Federle, J. R. Soc. Interface 2010(7), 587 (2010)

    Article  Google Scholar 

  29. O. Betz, in Biological Adhesive Systems. from Nature to Technical and Medical Application, ed. by J. Byern, I. Grunwald (Springer, Vienna, 2010), p. 307

    Google Scholar 

  30. H. Peisker, S.N. Gorb, J. Exp. Biol. 215, 1266 (2012)

    Article  Google Scholar 

  31. H. Peisker, L. Heepe, A.E. Kovalev, S.N. Gorb, J. R. Soc. Interface 11, 20140752 (2014)

    Article  Google Scholar 

  32. B. Abou et al., J. R. Soc. Interface 7, 1745 (2010)

    Article  Google Scholar 

  33. J.-H. Dirks, W. Federle, Soft Matter 7, 11047 (2011)

    Article  Google Scholar 

  34. A.E. Kovalev, M. Varenberg, S.N. Gorb, Soft Matter 8, 7560 (2012)

    Article  Google Scholar 

  35. A.E. Kovalev, A.E. Filippov, S.N. Gorb, J. R. Soc. Interface 11, 20130988 (2013)

    Article  Google Scholar 

  36. P. Drechsler, W.J. Federle, Comp. Physiol. A 192, 1213 (2006)

    Article  Google Scholar 

  37. N.E. Stork, J. Nat. Hist. 17, 583 (1983)

    Article  Google Scholar 

  38. M.E.N. Majerus, Ladybirds (Harper Collins, London, 1994)

    Google Scholar 

  39. I. Hodek, J.P. Michaud, Eur. J. Entomol. 105, 1 (2008)

    Article  Google Scholar 

  40. E.V. Gorb et al., J. Exp. Biol. 208, 4651 (2005)

    Article  Google Scholar 

  41. A. Kitchner, J.F.V. Vincent, J. Mater. Sci. 1987(22), 1385 (1987)

    Article  Google Scholar 

  42. S.N. Collins et al., J. Mater. Sci. 33, 5185 (1998)

    Article  Google Scholar 

  43. A.M. Taylor, R.H. Bonser, J.W. Farrent, J. Mater. Sci. 39, 939 (2004)

    Article  Google Scholar 

  44. N. Barbakadze, S. Enders, S. Gorb, E. Arzt, J. Exp. Biol. 209, 722 (2006)

    Article  Google Scholar 

  45. B. Chen, H. Gao, Int. J. Appl. Mech. 2, 1 (2010)

    Article  Google Scholar 

  46. H. Peisker, J. Michels, S.N. Gorb, Nat. Commun. 4, 1661 (2013)

    Article  Google Scholar 

  47. T.J. Weis-Fogh, J. Exp. Biol. 37, 889 (1960)

    Google Scholar 

  48. D. Voigt, J.M. Schuppert, S. Dattinger, S.N. Gorb, J. Zool. 281, 227 (2010)

    Google Scholar 

  49. A. Kosaki, R. Yamaoka, Jpn. J. Appl. Entomol. Zool. 40, 47 (1996)

    Article  Google Scholar 

  50. O. Betz, J. Morphol. 255, 24 (2003)

    Article  Google Scholar 

  51. B. Bhushan, Handbook of Micro/Nano Tribology (CRC Press, New York, 1998)

    Book  Google Scholar 

  52. M. Scherge, S.N. Gorb, Biological Micro- and Nanotribology—Nature’s Solutions (Springer, Berlin, 2001)

    Book  Google Scholar 

  53. J. Stefan, Ann. Phys. (Berlin, Ger.) 230, 316 (1875)

    Article  Google Scholar 

  54. P.G. De Gennes, C. Taupin, J. Phys. Chem. 86, 2294 (1982)

    Article  Google Scholar 

  55. M. Scherge, X. Li, J.A. Schaefer, Tribol. Lett. 6, 215 (1999)

    Article  Google Scholar 

  56. A.Y. Stark, T.W. Sullivan, P.H. Niewiarowski, J. Exp. Biol. 215, 3080 (2012)

    Article  Google Scholar 

  57. T. Boulard et al., Agric. For. Meteorol. 110, 159 (2002)

    Article  Google Scholar 

  58. G. Carbone, E. Pierro, S.N. Gorb, Soft Matter 7, 5545 (2011)

    Article  Google Scholar 

  59. L. Heepe, A.E. Kovalev, A.E. Filippov, S.N. Gorb, Phys. Rev. Lett. 111, 104301 (2013)

    Article  Google Scholar 

  60. L. Heepe, G. Carbone, E. Pierro, A.E. Kovalev, S.N. Gorb, Appl. Phys. Lett. 104, 011906 (2014)

    Article  Google Scholar 

  61. Y. Pelletier, Z. Smilowitz, Can. Entomol. 119, 1139 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This book chapter is adapted from the publication Heepe, Wolff, and Gorb (2016) Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata). Beilstein J. Nanotechnol. 7, 1332–1329. The authors like to thank J. Oesert, L. Reichel and H. Peisker for help with the experimental setup. V. Kastner (Max Planck Institute for Metals Research, Stuttgart, Germany) and U. Köhler are acknowledged for improvement of language of an early version of the manuscript. This work was partially supported by CARTRIB Project of The Leverhulme Trust to SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Heepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Heepe, L., Wolff, J.O., Gorb, S.N. (2017). Impact of Ambient Humidity on Traction Forces in Ladybird Beetles (Coccinella septempunctata). In: Heepe, L., Xue, L., Gorb, S. (eds) Bio-inspired Structured Adhesives. Biologically-Inspired Systems, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-59114-8_2

Download citation

Publish with us

Policies and ethics