Skip to main content

Characterization of Radical S-adenosylmethionine Enzymes and Intermediates in their Reactions by Continuous Wave and Pulse Electron Paramagnetic Resonance Spectroscopies

  • Chapter
  • First Online:
Future Directions in Metalloprotein and Metalloenzyme Research

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 33))

Abstract

Radical S-adenosylmethionine (SAM) enzymes comprise an important and a versatile superfamily of enzymes. For more than a decade, a significant effort has been directed towards understanding these enzymes. Electron paramagnetic resonance spectroscopy has played a crucial role in such studies, helping to decipher intricate details about the identity of the active metallocofactors, their relations to the substrate(s) utilized and an understanding of the mechanisms of the enzymatic reactions. In this chapter we overview research milestones in the field of radical SAM enzymes achieved with the aid of EPR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pegg SC-H et al (2006) Leveraging enzyme structure−function relationships for functional inference and experimental design: the structure−function linkage database. Biochemistry 45:2545–2555

    Article  CAS  PubMed  Google Scholar 

  2. Akiva E et al (2014) The structure–function linkage database. Nucleic Acids Res 42:D521–D530

    Article  CAS  PubMed  Google Scholar 

  3. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cosper NJ, Booker SJ, Ruzicka F, Frey PA, Scott RA (2000) Direct FeS cluster involvement in generation of a radical in lysine 2,3-aminomutase. Biochemistry 39:15668–15673

    Article  CAS  PubMed  Google Scholar 

  5. Chen DW, Walsby C, Hoffman BM, Frey PA (2003) Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase. J Am Chem Soc 125:11788–11789

    Article  CAS  PubMed  Google Scholar 

  6. Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH (2002) Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: A Mossbauer spectroscopic study. J Am Chem Soc 124:912–913

    Article  CAS  PubMed  Google Scholar 

  7. Walsby CJ, Ortillo D, Broderick WE, Broderick JB, Hoffman BM (2002) An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124:11270–11271

    Article  CAS  PubMed  Google Scholar 

  8. Walsby CJ et al (2002) Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124:3143–3151

    Article  CAS  PubMed  Google Scholar 

  9. Broderick JB, Duffus BR, Duschene KS, Shepard EM (2014) Radical S-adenosylmethionine enzymes. Chem Rev 114:4229–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frey PA, Magnusson OT (2003) S-adenosylmethionine: a wolf in sheep’s clothing, or a rich man’s adenosylcobalamin? Chem Rev 103:2129–2148

    Article  CAS  PubMed  Google Scholar 

  11. Lanz ND, Booker SJ (2012) Identification and function of auxiliary iron–sulfur clusters in radical SAM enzymes. Biochim Biophys Acta 1824:1196–1212

    Article  CAS  PubMed  Google Scholar 

  12. Lanz ND, Booker SJ (2015) Auxiliary iron–sulfur cofactors in radical SAM enzymes. Biochim Biophys Acta 1853:1316–1334

    Article  CAS  PubMed  Google Scholar 

  13. Reed GH, Poyner RR (2015) Fourier deconvolution methods for resolution enhancement in continuous-wave EPR spectroscopy. Methods Enzymol 563:23–36

    Article  PubMed  Google Scholar 

  14. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  15. Harmer J, Mitrikas G, Schweiger A (2009) In: Berliner L, Hanson G (eds) High resolution EPR, vol 28. Springer, New York, pp 13–61

    Chapter  Google Scholar 

  16. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  17. Petrovich R, Ruzicka F, Reed G, Frey P (1992) Characterization of iron-sulfur clusters in lysine 2,3-aminomutase by electron-paramagnetic resonance spectroscopy. Biochemistry 31:10774–10781

    Article  CAS  PubMed  Google Scholar 

  18. Ruszczycky MW, Choi S, Mansoorabadi SO, Liu H (2011) Mechanistic studies of the radical s-adenosyl-l-methionine enzyme desii: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose. J Am Chem Soc 133:7292–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Padovani D, Thomas F, Trautwein AX, Mulliez E, Fontecave M (2001) Activation of class III ribonucleotide reductase from E-coli. The electron transfer from the iron-sulfur center to S-adenosylmethionine. Biochemistry 40:6713–6719

    Article  CAS  PubMed  Google Scholar 

  20. Krebs C, Henshaw TF, Cheek J, Huynh BH, Broderick JB (2000) Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate-lyase activating enzyme: mossbauer characterization and implications for mechanism. J Am Chem Soc 122:12497–12506

    Article  CAS  Google Scholar 

  21. Lieder KW et al (1998) S-adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron-sulfur centers by electron paramagnetic resonance. Biochemistry 37:2578–2585

    Article  CAS  PubMed  Google Scholar 

  22. Hinckley GT, Frey PA (2006) Cofactor dependence of reduction potentials for [4Fe-4S](2+/1+) in lysine 2,3-aminomutase. Biochemistry 45:3219–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinckley GT, Ruzicka FJ, Thompson MJ, Blackburn GM, Frey PA (2003) Adenosyl coenzyme and pH dependence of the [4Fe-4S](2+/1+) transition in lysine 2,3-aminomutase. Arch Biochem Biophys 414:34–39

    Article  CAS  PubMed  Google Scholar 

  24. Hinckley GT, Frey PA (2006) An adaptable spectroelectrochemical titrator: The midpoint reduction potential of the iron–sulfur center in lysine 2,3-aminomutase. Anal Biochem 349:103–111

    Article  CAS  PubMed  Google Scholar 

  25. Broderick JB et al (1997) Pyruvate formate-lyase activating enzyme is an iron-sulfur protein. J Am Chem Soc 119:7396–7397

    Article  CAS  Google Scholar 

  26. Maiocco SJ, Grove TL, Booker SJ, Elliott SJ (2015) Electrochemical resolution of the [4Fe-4S] centers of the AdoMet radical enzyme BtrN: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J Am Chem Soc 137:8664–8667

    Article  CAS  PubMed  Google Scholar 

  27. Liu A, Graslund A (2000) Electron paramagnetic resonance evidence for a novel interconversion of [3Fe-4S](+) and [4Fe-4S](+) clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro. J Biol Chem 275:12367–12373

    Article  CAS  PubMed  Google Scholar 

  28. Silver SC et al (2010) Complete stereospecific repair of a synthetic dinucleotide spore photoproduct by spore photoproduct lyase. J Biol Inorg Chem 15:943–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rebeil R, Nicholson WL (2001) The subunit structure and catalytic mechanism of the Bacillus subtilis DNA repair enzyme spore photoproduct lyase. Proc Natl Acad Sci U S A 98:9038–9043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang L et al (2012) Mechanistic studies of the spore photoproduct lyase via a single cysteine mutation. Biochemistry 51:7173–7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kriek M et al (2007) Thiazole synthase from escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro. J Biol Chem 282:17413–17423

    Article  CAS  PubMed  Google Scholar 

  32. Paraskevopoulou C, Fairhurst SA, Lowe DJ, Brick P, Onesti S (2006) The elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine. Mol Microbiol 59:795–806

    Article  CAS  PubMed  Google Scholar 

  33. McGlynn SE et al (2010) Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the HMD hydrogenase active site cofactor. J Bacteriol 192:595–598

    Article  CAS  PubMed  Google Scholar 

  34. Brindley AA, Zajicek R, Warren MJ, Ferguson SJ, Rigby SEJ (2010) NirJ, a radical SAM family member of the d(1) heme biogenesis cluster. FEBS Lett 584:2461–2466

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q et al (2011) Characterization of NocL involved in thiopeptide nocathiacin i biosynthesis a [4Fe-4S] cluster and the catalysis of a radical s-adenosylmethionine enzyme. J Biol Chem 286:21287–21294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yokoyama K, Ohmori D, Kudo F, Eguchi T (2008) Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy. Biochemistry 47:8950–8960

    Article  CAS  PubMed  Google Scholar 

  37. Kuchenreuther JM et al (2013) A Radical intermediate in tyrosine scission to the CO and CN- ligands of FeFe hydrogenase. Science 342:472–475

    Article  CAS  PubMed  Google Scholar 

  38. Perche-Letuvee P et al (2012) 4-Demethylwyosine synthase from pyrococcus abyssi Is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S](+2) cluster that interacts with the pyruvate co-substrate. J Biol Chem 287:41174–41185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCarty RM, Krebs C, Bandarian V (2013) Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 52:188–198

    Article  CAS  PubMed  Google Scholar 

  40. Layer G et al (2005) Radical S-adenosylmethionine enzyme coproporphyrinogen III oxidase HemN - functional features of the [4Fe-4S] cluster and the two bound S-adenosyl-L-methionines. J Biol Chem 280:29038–29046

    Article  CAS  PubMed  Google Scholar 

  41. Szu P-H, Ruszczycky MW, Choi S, Yan F, Liu H (2009) Characterization and mechanistic studies of desll: a radical S-Adenosyl-L-methionine enzyme involved in the biosynthesis of TDP-D-Desosamine. J Am Chem Soc 131:14030–14042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kamat SS, Williams HJ, Dangott LJ, Chakrabarti M, Raushel FM (2013) The catalytic mechanism for aerobic formation of methane by bacteria. Nature 497:132–136

    Article  CAS  PubMed  Google Scholar 

  43. Blaszczyk AJ et al (2016) Spectroscopic and electrochemical characterization of the iron–sulfur and cobalamin cofactors of TsrM, an unusual radical S -adenosylmethionine methylase. J Am Chem Soc 138:3416–3426

    Article  CAS  PubMed  Google Scholar 

  44. Walsby CJ et al (2005) Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the ‘Radical-SAM’ protein superfamily. Inorg Chem 44:727–741

    Article  CAS  PubMed  Google Scholar 

  45. Werst MM, Kennedy MC, Beinert H, Hoffman BM (1990) Oxygen-17, proton, and deuterium electron nuclear double resonance characterization of solvent, substrate, and inhibitor binding to the iron-sulfur [4Fe-4S]+ cluster of aconitase. Biochemistry 29:10526–10532

    Google Scholar 

  46. Gambarelli S, Luttringer F, Padovani D, Mulliez E, Fontecave M (2005) Activation of the anaerobic ribonucleotide reductase by S-adenosylmethionine. Chembiochem 6:1960–1962

    Article  CAS  PubMed  Google Scholar 

  47. Tyryshkin AM, Dikanov SA, Reijerse EJ, Burgard C, Hüttermann J (1999) Characterization of bimodal coordination structure in nitrosyl heme complexes through hyperfine couplings with pyrrole and protein nitrogens. J Am Chem Soc 121:3396–3406

    Article  CAS  Google Scholar 

  48. Chandor A et al (2007) Characterization of the DNA repair spore photoproduct lyase enzyme from Clostridium acetobutylicum: a radical-SAM enzyme. C R Chim 10:756–765

    Article  CAS  Google Scholar 

  49. Horitani M et al (2016) Radical SAM catalysis via an organometallic intermediate with an Fe-[5’-C]-deoxyadenosyl bond. Science 352:822–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grove TL, Lee K-H, St. Clair J, Krebs C, Booker SJ (2008) In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47:7523–7538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grove TL, Ahlum JH, Sharma P, Krebs C, Booker SJ (2010) A consensus mechanism for radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters. Biochemistry 49:3783–3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lees NS et al (2009) ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-Adenosylmethionine-dependent enzyme MoaA: mechanistic implications. J Am Chem Soc 131:9184–9185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Forouhar F et al (2013) Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat Chem Biol 9:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuchenreuther JM et al (2013) Nuclear resonance vibrational spectroscopy and electron paramagnetic resonance spectroscopy of Fe-57-enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster. Biochemistry 52:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuchenreuther JM, Britt RD, Swartz JR (2012) New insights into [FeFe] hydrogenase activation and maturase function. PLoS One 7:e45850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubach JK, Brazzolotto X, Gaillard J, Fontecave M (2005) Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett 579:5055–5060

    Article  CAS  PubMed  Google Scholar 

  57. Czech I, Silakov A, Lubitz W, Happe T (2010) The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor. FEBS Lett 584:638–642

    Article  CAS  PubMed  Google Scholar 

  58. Dinis P et al (2015) X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proc Natl Acad Sci 112:1362–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suess DLM et al (2015) Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster. Proc Natl Acad Sci 112:11455–11460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ugulava NB, Gibney BR, Jarrett JT (2001) Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry 40:8343–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ugulava NB, Surerus KK, Jarrett JT (2002) Evidence from Mosssbauer spectroscopy for distinct [2Fe-2S](2+) and [4Fe-4S](2+) cluster binding sites in biotin synthase from Escherichia coli. J Am Chem Soc 124:9050–9051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303:76–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bui BTS et al (1998) Biotin synthase mechanism: on the origin of sulphur. FEBS Lett 440:226–230

    Article  CAS  PubMed  Google Scholar 

  64. Bui BTS, Mattioli TA, Florentin D, Bolbach G, Marquet A (2006) Escherichia coli biotin synthase produces selenobiotin. Further evidence of the involvement of the [2Fe-2S](2+) cluster in the sulfur insertion step. Biochemistry 45:3824–3834

    Article  CAS  Google Scholar 

  65. Taylor AM, Stoll S, Britt RD, Jarrett JT (2011) Reduction of the [2Fe-2S] cluster accompanies formation of the intermediate 9-mercaptodethiobiotin in escherichia coli biotin synthase. Biochemistry 50:7953–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jameson GNL, Cosper MM, Hernandez HL, Johnson MK, Huynh BH (2004) Role of the [2Fe-2S] cluster in recombinant Escherichia coli biotin synthase. Biochemistry 43:2022–2031

    Article  CAS  PubMed  Google Scholar 

  67. Fugate CJ et al (2012) 9-Mercaptodethiobiotin is generated as a ligand to the [2Fe-2S](+) Cluster during the reaction catalyzed by biotin synthase from escherichia coli. J Am Chem Soc 134:9042–9045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Knappe J, Bohnert E, Brummer W (1965) S-adenosyl-L-methionine a component of clastic dissimilation of pyruvate. Biochim Biophys Acta 107:603–605

    Article  CAS  PubMed  Google Scholar 

  69. Knappe J, Schmitt T (1976) Novel reaction of S-adenosyl-L-methionine correlated with activation of pyruvate formate-lyase. Biochem Biophys Res Commun 71:1110–1117

    Article  CAS  PubMed  Google Scholar 

  70. Knappe J, Neugebauer F, Blaschkowski H, Ganzler M (1984) Post-translational activation introduces a free-radical into pyruvate formate-lyase. Proc Natl Acad Sci U S A 81:1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Unkrig V, Neugebauer FA, Knappe J (1989) The free radical of pyruvate formate-lyase. Characterization by EPR spectroscopy and involvement in catalysis as studied with the substrate-analogue hypopthosphite. Eur J Biochem 184:723–728

    Article  CAS  PubMed  Google Scholar 

  72. Wagner A, Frey M, Neugebauer F, Schafer W, Knappe J (1992) The free-radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A 89:996–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chirpich T, Zappia V, Costilow R, Barker H (1970) Lysine 2,3-aminomutase - purification and properties of a pyridoxal phosphate and s-adenosylmethionine-activated enzyme. J Biol Chem 245:1778–1789

    CAS  PubMed  Google Scholar 

  74. Magnusson OT, Reed GH, Frey PA (1999) Spectroscopic evidence for the participation of an allylic analogue of the 5 ’-deoxyadenosyl radical in the reaction of lysine 2,3-aminomutase. J Am Chem Soc 121:9764–9765

    Article  CAS  Google Scholar 

  75. Magnusson OT, Reed GH, Frey PA (2001) Characterization of an allylic analogue of the 5 ’-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry 40:7773–7782

    Article  CAS  PubMed  Google Scholar 

  76. Horitani M et al (2015) Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3-aminomutase show the 5′-dAdo• ‘free radical’ is never free. J Am Chem Soc 137:7111–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miller J, Bandarian V, Reed GH, Frey PA (2001) Inhibition of lysine 2,3-aminomutase by the alternative substrate 4-thialysine and characterization of the 4-thialysyl radical intermediate. Arch Biochem Biophys 387:281–288

    Article  CAS  PubMed  Google Scholar 

  78. Wu WM et al (2000) Lysine 2,3-aminomutase and trans-4,5-dehydrolysine: Characterization of an allylic analogue of a substrate-based radical in the catalytic mechanism? Biochemistry 39:9561–9570

    Article  CAS  PubMed  Google Scholar 

  79. Reed GH, Ballinger MD (1995) [24] Characterization of a radical intermediate in the lysine 2,3-aminomutase reaction. Methods Enzymol 258:362–379

    Article  CAS  PubMed  Google Scholar 

  80. Lees NS et al (2006) How an enzyme tames reactive intermediates: positioning of the active-site components of lysine 2,3-aminomutase during enzymatic turnover as determined by ENDOR spectroscopy. J Am Chem Soc 128:10145–10154

    Article  CAS  PubMed  Google Scholar 

  81. Ballinger M, Reed G, Frey P (1992) An organic radical in the lysine 2,3-aminomutase reaction. Biochemistry 31:949–953

    Article  CAS  PubMed  Google Scholar 

  82. Chang CH, Ballinger MD, Reed GH, Frey PA (1996) Lysine 2,3-aminomutase: rapid mix-freeze-quench electron paramagnetic resonance studies establishing the kinetic competence of a substrate-based radical intermediate. Biochemistry 35:11081–11084

    Article  CAS  PubMed  Google Scholar 

  83. Ballinger M, Frey P, Reed G (1992) Structure of a substrate radical intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry 31:10782–10789

    Article  CAS  PubMed  Google Scholar 

  84. Ballinger M, Frey P, Reed G, Lobrutto R (1995) Pulsed electron-paramagnetic-resonance studies of the lysine 2,3-aminomutase substrate radical - evidence for participation of pyridoxal 5’-phosphate in a radical rearrangement. Biochemistry 34:10086–10093

    Article  CAS  PubMed  Google Scholar 

  85. Layer G et al (2006) The substrate radical of Escherichia coli oxygen-independent coproporphyrinogen III oxidase HemN. J Biol Chem 281:15727–15734

    Article  CAS  PubMed  Google Scholar 

  86. Yan F et al (2010) RImN and Cfr are Radical SAM Enzymes Involved in Methylation of Ribosomal RNA. J Am Chem Soc 132:3953–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grove TL et al (2011) A radically different mechanism for s-adenosylmethionine-dependent methyltransferases. Science 332:604–607

    Article  CAS  PubMed  Google Scholar 

  88. Grove TL et al (2013) A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nat Chem Biol 9:422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  90. Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973

    Article  CAS  PubMed  Google Scholar 

  91. Nicolet Y et al (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601

    Article  CAS  PubMed  Google Scholar 

  92. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Struct Fold Des 7:13–23

    Article  CAS  Google Scholar 

  93. Silakov A, Wenk B, Reijerse E, Lubitz W (2009) N-14 HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 11:6592–6599

    Article  CAS  PubMed  Google Scholar 

  94. Adamska-Venkatesh A et al (2015) Spectroscopic characterization of the bridging amine in the active site of [FeFe] hydrogenase using isotopologues of the H-cluster. J Am Chem Soc 137:12744–12747

    Article  CAS  PubMed  Google Scholar 

  95. Kuchenreuther JM, Stapleton JA, Swartz JR (2009) Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [FeFe] hydrogenase activation. PLoS One 4:e7565

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kuchenreuther JM, George SJ, Grady-Smith CS, Cramer SP, Swartz JR (2011) Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: All Five CO and CN- ligands derive from tyrosine. PLoS One 6:e20346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suess DLM, Kuchenreuther JM, De La Paz L, Swartz JR, Britt RD (2016) Biosynthesis of the [FeFe] hydrogenase H Cluster: a central role for the radical SAM enzyme HydG. Inorg Chem 55:478–487

    Article  CAS  PubMed  Google Scholar 

  98. Lanz ND et al (2015) Characterization of a radical intermediate in lipoyl cofactor biosynthesis. J Am Chem Soc 137:13216–13219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Silakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Silakov, A., Lanz, N.D., Booker, S.J. (2017). Characterization of Radical S-adenosylmethionine Enzymes and Intermediates in their Reactions by Continuous Wave and Pulse Electron Paramagnetic Resonance Spectroscopies. In: Hanson, G., Berliner, L. (eds) Future Directions in Metalloprotein and Metalloenzyme Research. Biological Magnetic Resonance, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-59100-1_6

Download citation

Publish with us

Policies and ethics