Skip to main content

Online Multi-threshold Learning with Imbalanced Data Stream

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10261))

Included in the following conference series:

  • 2504 Accesses

Abstract

This paper addresses the imbalanced data problem in an online fashion based on multi-threshold learning. The majority of existing works on processing large-scale imbalanced data stream assume a prior distribution of data based on a training dataset, while we consider a more challenging setting without any assumption of the prior, and propose an online multi-threshold learning (OMTL) method by simultaneously learning multiple classifiers with different threshold based on F-measure incremental updating. The proposed approach shows its potentials on recent benchmark datasets compared to previous cost-sensitive and threshold fine-tuning based online learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

References

  1. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: DBSMOTE: density-based synthetic minority over-sampling technique. Appl. Intell. 36(3), 664–684 (2012)

    Article  Google Scholar 

  2. Busa-Fekete, R., Szörényi, B., Dembczynski, K., Hüllermeier, E.: Online F-measure optimization. In: Advances in Neural Information Processing Systems, pp. 595–603 (2015)

    Google Scholar 

  3. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 973–978. Lawrence Erlbaum Associates Ltd. (2001)

    Google Scholar 

  4. Gao, J., Liu, X., Ooi, B.C., Wang, H., Chen, G.: An online cost sensitive decision-making method in crowdsourcing systems. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 217–228. ACM (2013)

    Google Scholar 

  5. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). doi:10.1007/11538059_91

    Chapter  Google Scholar 

  6. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  8. Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.: The perceptron algorithm with uneven margins. In: ICML, vol. 2, pp. 379–386 (2002)

    Google Scholar 

  9. Scott, C.: Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 153–160 (2011)

    Google Scholar 

  10. Stefanowski, J., Wilk, S.: Selective pre-processing of imbalanced data for improving classification performance. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 283–292. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85836-2_27

    Chapter  Google Scholar 

  11. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009)

    Article  Google Scholar 

  12. Van Hulse, J., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 935–942. ACM (2007)

    Google Scholar 

  13. Wang, J., Zhao, P., Hoi, S.C.: Cost-sensitive online classification. IEEE Trans. Knowl. Data Eng. 26(10), 2425–2438 (2014)

    Article  Google Scholar 

  14. Ying, Y., Wen, L., Lyu, S.: Stochastic online AUC maximization. In: Advances in Neural Information Processing Systems, pp. 451–459 (2016)

    Google Scholar 

  15. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent (2003)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding supported by State Key Laboratory of Software Engineering, Computer School, Wuhan University, and research project number is SKLSE-2015-A-06, and also partially supported by the National Natural Science Foundation of China under the Project 61371191.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xufen Cai , Rong Zhu or Long Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cai, X., Yang, M., Zhu, R., Li, X., Ye, L., Zhang, Q. (2017). Online Multi-threshold Learning with Imbalanced Data Stream. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10261. Springer, Cham. https://doi.org/10.1007/978-3-319-59072-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59072-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59071-4

  • Online ISBN: 978-3-319-59072-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics