Skip to main content

Pathological Classification: GEP, TNET, and Rare Forms

  • Chapter
  • First Online:
Neuroendocrine Tumors in Real Life

Abstract

Pathological classification of neuroendocrine tumors is based mainly on proliferative activity in both gastrointestinal tract (GEP-NETs) and thorax. Ki67 has been introduced as the mainstay of grading in the 2010 WHO classification of GEP-NETs, with the definition of three grades of malignancy, depending on whether the value is ≤2%, 3–20%, and >20%, respectively, in case of well-differentiated NET, moderately differentiated NET, or neuroendocrine carcinoma (NEC). A recent matter of debate is whether dividing or not high-grade NEC into two subgroups on the basis of both morphologic differentiation and proliferation rate. According to 2015 WHO, thoracic neuroendocrine tumors are classified into typical carcinoid, atypical carcinoid, large-cell neuroendocrine carcinoma, and small-cell neuroendocrine carcinoma on the base of mitotic activity and the presence/absence of necrosis. More information have been acquired on preneoplastic lesions and mixed forms.

Less extensive is the knowledge of neuroendocrine neoplasms in uncommon sites (urinary system and male genital organs, female genital organs, breast, head and neck, and skin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Guadagno E, Del Basso De Caro M, Insabato L (2016) An update on the pathology of neuroendocrine tumors. Front Biosci (Scholar Ed) 8:1–12

    Article  Google Scholar 

  2. Kim JY, Hong SM (2016) Recent updates on neuroendocrine Tumors from the gastrointestinal and Pancreatobiliary tracts. Arch Pathol Lab Med 140:437–448

    Article  PubMed  Google Scholar 

  3. Rindi G, Arnold R, Bosman FT, Capella C, Klimstra DS, Kloppel G, Komminoth P, Solcia E (2010) In: Bosman FT, Carneiro F, Hruban H et al (eds) Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: WHO classification of tumors of the digestive system. IARC Press, Lyon

    Google Scholar 

  4. Janson ET, Sorbye H, Welin S et al (2014) Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncol 53:1284–1297

    Article  PubMed  Google Scholar 

  5. Koo J, Dhall D (2015) Problems with the diagnosis of metastatic neuroendocrine neoplasms. Which diagnostic criteria should we use to determine tumor origin and help guide therapy? Semin Diagn Pathol 32:456–468

    Article  PubMed  Google Scholar 

  6. Saqi A, Alexis D, Remotti F et al (2005) Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol 123:394–404

    Article  PubMed  Google Scholar 

  7. Srivastava A, Hornick JL (2009) Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 33:626–632

    Article  PubMed  Google Scholar 

  8. Deshpande V, Fernandez-del Castillo C, Muzikansky A et al (2004) Cytokeratin 19 is a powerful predictor of survival in pancreatic endocrine tumors. Am J Surg Pathol 28:1145–1153

    Article  PubMed  Google Scholar 

  9. Viale G, Doglioni C, Gambacorta M et al (1992) Progesterone receptor immunoreactivity in pancreatic endocrine tumors. An immunocytochemical study of 156 neuroendocrine tumors of the pancreas, gastrointestinal and respiratory tracts, and skin. Cancer 70:2268–2277

    Article  CAS  PubMed  Google Scholar 

  10. Schmitt AM, Riniker F, Anlauf M et al (2008) Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 32:420–425

    Article  PubMed  Google Scholar 

  11. Koo J, Mertens RB, Mirocha JM et al (2012) Value of islet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol 25:893–901

    Article  CAS  PubMed  Google Scholar 

  12. Bellizzi AM (2013) Assigning site of origin in metastatic neuroendocrine neoplasms: a clinically significant application of diagnostic immunohistochemistry. Adv Anat Pathol 20:285–314

    Article  CAS  PubMed  Google Scholar 

  13. Voss SM, Riley MP, Lokhandwala PM et al (2015) Mitotic count by phosphohistone H3 immunohistochemical staining predicts survivaland improves interobserver reproducibility in well-differentiated neuroendocrine tumors of the pancreas. Am J Surg Pathol 39:13–24

    Article  PubMed  Google Scholar 

  14. Cross SS, Start RD, Smith JH (1990) Does delay in fixation affect the number of mitotic figures in processed tissue? J Clin Pathol 43:597–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCall CM, Shi C, Cornish TC et al (2013) Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am J Surg Pathol 37:1671–1677

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reid MD, Balci S, Saka B et al (2014) Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol 25:65–79

    Article  CAS  PubMed  Google Scholar 

  17. Reid MD, Bagci P, Ohike N et al (2016) Calculation of the Ki67 index in pancreatic neuroendocrine tumors: a comparativeanalysis of four counting methodologies. Mod Pathol 29:93

    Article  Google Scholar 

  18. Singh S, Hallet J, Rowsell C et al (2014) Variability of Ki67 labeling index in multiple neuroendocrine tumors specimens over the course of the disease. Eur J Surg Oncol 40:1517–1522

    Article  CAS  PubMed  Google Scholar 

  19. Vélayoudom-Céphise FL, Duvillard P, Foucan L et al (2013) Are G3 ENETS Neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 20:649–657

    Article  PubMed  Google Scholar 

  20. Basturk O, Yang Z, Tang LH et al (2015) The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol 39:683–690

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sorbye H, Welin S, Langer SW et al (2013) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24:152–160

    Article  CAS  PubMed  Google Scholar 

  22. Tang LH, Basturk O, Sue JJ et al (2016) A practical approach to the classification of WHO grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the pancreas. Am J Surg Pathol 40:1192–1202

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hijioka S, Hosoda W, Mizuno N et al (2015) Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas? J Gastroenterol 50:564–572

    Article  CAS  PubMed  Google Scholar 

  24. Volante M, Rindi G, Papotti M (2006) The grey zone between pure (neuro)endocrine and non(neuro)endocrine tumours: a comment on concepts and classification of mixed exocrine-endocrine neoplasms. Virchows Arch 449:499–506

    Article  PubMed  Google Scholar 

  25. La Rosa S, Marando A, Sessa F et al (2012) Mixed Adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract: An Update. Cancers (Basel) 4:11–30

    Article  PubMed Central  Google Scholar 

  26. Chen MH, Kuo YJ, Yeh YC et al (2015) High neuroendocrine component is a factor for poor prognosis in gastrointestinal high-grade malignant mixed adenoneuroendocrine neoplasms. J Chin Med Assoc 78:454–459

    Article  PubMed  Google Scholar 

  27. Delle Fave G, Marignani M, Corleto VD et al (2002) Progression of gastric enterochromaffin-like cells growth in Zollinger-Ellison syndrome and atrophic body gastritis patients. Dig Liver Dis 34:270–278

    Article  CAS  PubMed  Google Scholar 

  28. Klöppel G, Anlauf M, Perren A (2007) Endocrine precursor lesions of gastroenteropancreatic neuroendocrine tumors. Endocr Pathol 18:150–155

    Article  PubMed  Google Scholar 

  29. Annibale B, Azzoni C, Corleto VD et al (2001) Atrophic body gastritis patients with enterochromaffin-like cell dysplasia are at increased risk for the development of type I gastric carcinoid. Eur J Gastroenterol Hepatol 13:1449–1456

    Article  CAS  PubMed  Google Scholar 

  30. Vanoli A, La Rosa S, Luinetti O et al (2013) Histologic changes in type a chronic atrophic gastritis indicating increased risk of neuroendocrine tumor development: the predictive role of dysplastic and severely hyperplastic enterochromaffin-like cell lesions. HumPathol 44:1827–1837

    CAS  Google Scholar 

  31. Brambilla E, Beasley MB, Austin JHM et al (2015) Neuroendocrine tumours. In: WHO classification of tumors of the lung, pleura, thymus and heart. Eds: Travis WD, Brambilla E, burke AP et al. IARC Press, Lyon

    Google Scholar 

  32. Wick MR (2000) Immunohistology of neuroendocrine and neuroectodermal tumors. Semin Diagn Pathol 17:194–203

    CAS  PubMed  Google Scholar 

  33. Sturm N, Rossi G, Lantuejoul S et al (2002) Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell lung proliferations with special interest in carcinoids. Hum Pathol 33:175–182

    Article  PubMed  Google Scholar 

  34. Mitsudomi T, Morita S, Yatabe Y et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11:121–128

    Article  CAS  PubMed  Google Scholar 

  35. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  36. Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  PubMed  Google Scholar 

  37. Travis WD, Brambilla E, Noguchi M et al (2013) Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med 137:668–684

    Article  PubMed  Google Scholar 

  38. Ionescu DN, Treaba D, Gilks CB et al (2007) Nonsmall cell lung carcinoma with neuroendocrine differentiation--an entity of no clinical or prognostic significance. Am J Surg Pathol 31:26–32

    Article  PubMed  Google Scholar 

  39. Sterlacci W, Fiegl M, Hilbe W et al (2009) Clinical relevance of neuroendocrine differentiation in non-small cell lung cancer assessed by immunohistochemistry: a retrospective study on 405 surgically resected cases. Virchows Arch 455:125–132

    Article  CAS  PubMed  Google Scholar 

  40. Asamura H, Kameya T, Matsuno Y et al (2006) Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 24:70–76

    Article  PubMed  Google Scholar 

  41. Pelosi G, Hiroshima K, Mino-Kenudson M (2014) Controversial issues and new discoveries in lung neuroendocrine tumors. Diagn Histopathol 20:392–397

    Article  Google Scholar 

  42. Rindi G, Klersy C, Inzani F et al (2013) Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer 21:1–16

    Article  PubMed  Google Scholar 

  43. Pelosi G, Rodriguez J, Viale G (2005) Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol 29:179–187

    Article  PubMed  Google Scholar 

  44. Ha SY, Han J, Kim WS et al (2012) Interobserver variability in diagnosing high-grade neuroendocrine carcinoma of the lung and comparing it with the morphometric analysis. Korean J Pathol 46:42–47

    Google Scholar 

  45. Rizvi SM, Goodwill J, Lim E et al (2009) The frequency of neuroendocrine cell hyperplasia in patients with pulmonary neuroendocrine tumours and non-neuroendocrine cell carcinomas. Histopathology 55:332–337

    Article  PubMed  Google Scholar 

  46. Guadagno E, De Rosa G, Del Basso De Caro M (2016) Neuroendocrine tumours in rare sites: differences in nomenclatureand diagnostics-arare and ubiquitous histotype. J Clin Pathol 69:563–574

    Article  CAS  PubMed  Google Scholar 

  47. Epstein JI, Amin MB, Evans AJ et al (2016) Tumours of the prostate. Neuroendocrine tumours. In: Moch H, Humphrey PA, Ulbright TM et al (eds) WHO classification of tumours of the urinary system and male genital organs. IARC press, Lyon

    Google Scholar 

  48. Tamas EF, Epstein JI (2006) Prognostic significance of paneth cell-like neuroendocrine differentiation in adenocarcinoma of the prostate. Am J Surg Pathol 30:980–985

    Article  PubMed  Google Scholar 

  49. Wang W, Epstein JI (2008) Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 32:65–71

    Article  PubMed  Google Scholar 

  50. Guo CC, Dancer JY, Wang Y et al (2011) TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 42:11–17

    Article  CAS  PubMed  Google Scholar 

  51. Evans AJ, Humphrey PA, Belani J et al (2006) Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am J Surg Pathol 30:684–693

    Article  PubMed  Google Scholar 

  52. So JS, Epstein JI (2013) GATA3 expression in paragangliomas: a pitfall potentially leading to misdiagnosis of urothelial carcinoma. Mod Pathol 26:1365–1370

    Article  CAS  PubMed  Google Scholar 

  53. La Rosa S, Bernasconi B, Micello D et al (2009) Primary small cell neuroendocrine carcinoma of the kidney: morphological, immunohistochemical, ultrastructural, and cytogenetic study of a case and review of the literature. Endocr Pathol 20:24–34

    Article  PubMed  Google Scholar 

  54. Lane BR, Chery F, Jour G et al (2007) Renal neuroendocrine tumours: a clinicopathological study. BJU Int 100:1030–1035

    PubMed  Google Scholar 

  55. Wann C, John NT, Kumar RM (2014) Primary renal large cell neuroendocrine carcinoma in a young man. J Clin Diagn Res 8:ND08–ND09

    PubMed  PubMed Central  Google Scholar 

  56. Romero FR, Rais-Bahrami S, Permpongkosol S et al (2006) Primary carcinoid tumors of the kidney. J Urol 176:2359–2366

    Article  PubMed  Google Scholar 

  57. Aung PP, Killian K, Poropatich CO et al (2013) Primary neuroendocrine tumors of the kidney: morphological and molecular alterations of an uncommon malignancy. Hum Pathol 44:873–880

    Article  PubMed  Google Scholar 

  58. Reyes A, Moran CA, Suster S et al (2003) Neuroendocrine carcinomas (carcinoid tumor) ofthe testis. A clinicopathologic and immunohistochemical study of ten cases. Am J Clin Pathol 120:182–187

    Article  CAS  PubMed  Google Scholar 

  59. Colgan TJ, Kim I, Hirschowitz L et al (2014) Neuroendocrine tumors. In: Kurman RJ, Carcangiu ML, Herrington CS et al (eds) WHO classification of tumors of the female reproductive organs, 4th edn. IARC Press, Lyon, pp 196–198

    Google Scholar 

  60. Ishida GM, Kato N, Hayasaka T et al (2004) Small cell neuroendocrine carcinomas of the uterine cervix: a histological, immunohistochemical, and molecular-genetic study. Int J Gynecol Pathol 23:366–372

    Article  PubMed  Google Scholar 

  61. Cui S, Lespinasse P, Cracchiolo B et al (2001) Large cell neuroendocrine carcinoma of the cervix associated with adenocarcinoma in situ: evidence of a common origin. Int J Gynecol Pathol 20:311–312

    Article  CAS  PubMed  Google Scholar 

  62. Bartosch C, Manuel Lopes J, Oliva E (2011) Endometrial carcinomas: a review emphasizing overlapping and distinctive morphological and immunohistochemical features. Adv Anat Pathol 18:415–437

    Article  PubMed  Google Scholar 

  63. Chun YK (2015) Neuroendocrine Tumors of the female reproductive tract: a literature review. J Pathol Transl Med 49:450–461

    Article  PubMed Central  Google Scholar 

  64. Khurana A, Gupta G, Gupta M et al (2013) Primary neuroendocrine carcinoma of the vagina with coexistent atypical vaginal adenosis: a rare entity. J Cancer Res Ther 9:328–330

    Article  PubMed  Google Scholar 

  65. Cai T, Li Y, Jiang Q et al (2014) Paraganglioma of the vagina: a case report and review of the literature. Onco Targets Ther 7:965–968

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hierro I, Blanes A, Matilla A et al (2000) Merkel cell (neuroendocrine) carcinoma of the vulva. A case report with immunohistochemical and ultrastructural findings and review of the literature. Pathol Res Pract 196:503–509

    Article  CAS  PubMed  Google Scholar 

  67. Bussolati G, Badve S (2012) Carcinomas with neuroendocrine features. In: Lakhani SR, Ellis IO, Schnitt SJ et al (eds) World Health Organization classification of tumours of the breast. IARC Press, Lyon, pp 62–63

    Google Scholar 

  68. O’Donnell ME, McCavert M, Carson J et al (2009) Non-epithelial malignancies and metastatic tumours of the breast. Ulster Med J 78:105–112

    PubMed  PubMed Central  Google Scholar 

  69. Shin SJ, DeLellis RA, Ying L et al (2000) Small cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol 24:1231–1238

    Article  CAS  PubMed  Google Scholar 

  70. Christie M, Chin-Lenn L, Watts MM et al (2010) Primary small cell carcinoma of the breast with TTF-1 and neuroendocrine marker expressing carcinoma in situ. Int J Clin Exp Pathol 3:629–633

    PubMed  PubMed Central  Google Scholar 

  71. Sica G, Wagner PL, Altorki N et al (2008) Immunohistochemical expression of estrogenand progesterone receptors in primary pulmonary neuroendocrine tumors. Arch Pathol Lab Med 132:1889–1895

    PubMed  Google Scholar 

  72. Mečiarová I, Sojáková M, Mego M et al (2016) High-grade neuroendocrine carcinoma of the breast With Focal squamous differentiation. Int J Surg Pathol. pii: 1066896916656444

    Google Scholar 

  73. Perez-Ordonez B (2005) Neuroendocrine tumors. In: Barnes L, Eveson JW, Reichart P et al (eds) World Health Organization classification of tumours. Pathology angenetics. Head and neck tumours. IARC Press, Lyon, pp 26–27

    Google Scholar 

  74. Lewis JS, Spence DC, Chiosea S et al (2010) Large cell neuroendocrine carcinoma of the larynx: definition of an entity. Head Neck Pathol 4:198–207

    Article  PubMed  PubMed Central  Google Scholar 

  75. Torske KR, Thompson LD (2002) Adenoma versus carcinoid tumor of the middle ear: a study of 48 cases and review of the literature. Mod Pathol 15:543–555

    Article  PubMed  Google Scholar 

  76. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mogha A, Fautrel A, Mouchet N, Guo N, Corre S, Adamski H, Watier E, Misery L, Galibert MD (2010) Merkel cell polyomavirus small T antigen mRNA level is increased following in vivo UV-radiation. PLoS One 5(7):e11423

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moshiri AS, Nghiem P (2014) Milestones in the staging, classification, and biology of Merkel cell carcinoma. J Natl Compr Cancer Netw 12:1255–1262

    Article  Google Scholar 

  79. Lemos BD, Storer BE, Iyer JG, Phillips JL, Bichakjian CK, Fang LC, Johnson TM, Liegeois-Kwon NJ, Otley CC, Paulson KG, Ross MI, Yu SS, Zeitouni NC, Byrd DR, Sondak VK, Gershenwald JE, Sober AJ, Nghiem P (2010) Pathologic nodal evaluation improves prognostic accuracy in Merkel cell carcinoma: analysis of 5823 cases as the basis of the first consensus staging system. J Am Acad Dermatol 63:751–756

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Laura Del Basso De Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

De Caro, M.L.D.B., Guadagno, E., De Rosa, G. (2018). Pathological Classification: GEP, TNET, and Rare Forms. In: Colao, A., Faggiano, A., de Herder, W. (eds) Neuroendocrine Tumors in Real Life. Springer, Cham. https://doi.org/10.1007/978-3-319-59024-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59024-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59022-6

  • Online ISBN: 978-3-319-59024-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics