Skip to main content

Representations of Lie Superalgebras

  • Chapter
  • First Online:
Perspectives in Lie Theory

Part of the book series: Springer INdAM Series ((SINDAMS,volume 19))

Abstract

Abstract In these notes we give an introduction to representation theory of simple finite-dimensional Lie superalgebras. We concentrate on so called basic superalgebras. Those are superalgebras which have even reductive part and admit an invariant form. We start with structure theory of basic superalgebras emphasizing abstract properties of roots and then proceed to representations, trying to demonstrate the variety of methods: Harish-Chandra homomorphism, support variety, translation functors, Borel-Weil-Bott theory and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A grading is compatible if and .

  2. 2.

    This assumption is not essential and can be dropped. It is here only for convenience of notations.

References

  1. J. Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m | n). J. Am. Math. Soc. 16(1), 185–231 (2003)

    Article  MATH  Google Scholar 

  2. J. Brundan, C. Stroppel, Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. J. Eur. Math. Soc. 14(2), 373–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry. EMS Series of Lectures in Mathematics (EMS, Zurich, 2011)

    Google Scholar 

  4. S.J. Cheng, W. Wang, Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics, vol. 144 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  5. S.J. Cheng, J.H. Kwon, Kac-Wakimoto character formula for ortho-symplectic Lie superalgebras (2017). arxiv:1406.6739

    Google Scholar 

  6. S.J. Cheng, N. Lam, W. Wang, Super duality for general linear Lie superalgebras and applications. Proc. Symposia Pure Math. Am. Math. Soc. 86, 113–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Coulembier, V. Serganova, Homological invariants in category O for the general linear superalgebra. Trans. Am. Math. Soc. (2017)

    MATH  Google Scholar 

  8. E. Dan-Cohen, I. Penkov, V. Serganova, A Koszul category of representations of finitary Lie algebras. Adv. Math. 289, 250–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deligne, Catégories tannakiennes. The Grothendieck Festschrift (Birkhauser, Boston, 1990), pp. 111–195

    Google Scholar 

  10. J. Dixmier, Enveloping Algebras (Akademie-Verlag, Berlin, 1977)

    MATH  Google Scholar 

  11. M. Duflo, V. Serganova, On associated variety for Lie superalgebras (2005). arXiv: math/0507198

    Google Scholar 

  12. P. Gabriel, Indecomposable Representations II. Symposia Mathematica, vol. XI (Academic, London, 1973), pp. 81–104

    Google Scholar 

  13. J. Germoni, Representations indecomposables des algebres de Lie speciales lineaires. These de l’universite de Strasbourg (1997)

    Google Scholar 

  14. J. Germoni, Indecomposable representations of osp(3, 2), D(2, 1, a) and G 2, in Colloquium in Homology and Representation Theory, vol. 65, Bol. Acad. Nac. Cienc, Cordoba (2000), pp. 147–163

    Google Scholar 

  15. M. Gorelik, Strongly typical representations of the basic classical Lie superalgebras. J. Am. Math. Soc. 15(1), 167–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Gorelik, The Kac construction of the centre of for Lie superalgebras. J. Nonlinear Math. Phys. 11(3), 325–349 (2004)

    Google Scholar 

  17. C. Gruson, Sur l’ideal du cone autocommutant des super algebres de Lie basiques classiques et etranges. Ann. Inst. Fourier (Grenoble) 50(3), 807–831 (2000)

    Google Scholar 

  18. C. Gruson, Cohomologie des modules de dimension finie sur la super algebre . J. Algebra 259, 581–598 (2003)

    Google Scholar 

  19. C. Gruson, V. Serganova, Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras. Proc. Lond. Math. Soc. (3) 101(3), 852–892 (2010)

    Google Scholar 

  20. C. Gruson, V. Serganova, Bernstein-Gelfand-Gelfand reciprocity and indecomposable projective modules for classical algebraic supergroups. Mosc. Math. J. 13(2), 281–313 (2013)

    MathSciNet  MATH  Google Scholar 

  21. T. Heidersdorf, R. Wassauer, Cohomological tensor functors on representations of the general linear supergroup (2014). arXiv:1406.0321

    Google Scholar 

  22. V.G. Kac, Lie superalgebras. Adv. Math. 26, 8–96 (1977)

    Article  MATH  Google Scholar 

  23. V.G. Kac, Representations of classical Lie superalgebras. Differential Geometrical Methods in Mathematical Physics, II. Proceedings of the Conference, University of Bonn, Bonn, 1977. Lecture Notes in Mathematics, vol. 676 (Springer, Berlin, 1978), pp. 597–626

    Google Scholar 

  24. V.G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions. Proc. Nat. Acad. Sci. U. S. A. 81(2), 645–647 (1984). Phys. Sci.

    Google Scholar 

  25. V.G. Kac, M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, in Lie Theory and Geometry. Progress in Mathematics, vol. 123 (Birkhäuser Boston, Boston, MA, 1994), pp. 415–456

    Google Scholar 

  26. M. Kontsevich, Defomation quantization of Poisson manifold. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Kostant, Graded Manifolds, Graded Lie Theory, and Prequantization. Lecture Notes in Mathematics, vol. 570 (Springer, Berlin, 1977), pp. 177–306

    Google Scholar 

  28. J.L. Koszul, Graded manifolds and graded Lie algebras. International Meeting on Geometry and Physics (Bologna), Pitagora (1982), pp. 71–84

    Google Scholar 

  29. L. Martirosyan, The representation theory of the exceptional Lie superalgebras F(4) and G(3). J. Algebra 419, 167–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Masuoka, A. Zubkov, Quotient sheaves of algebraic supergroups are superschemes. J. Algebra 348, 135–170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Masuoka, Harish-Chandra pairs for algebraic affine supergroup schemes over an arbitrary field. Transform. Groups 17(4), 1085–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Musson, Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics, vol. 131 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  33. I. Musson, V. Serganova, Combinatorics of character formulas for the Lie superalgebra gl(m, n). Transform. Groups 16(2), 555–578 (2011)

    Google Scholar 

  34. A.L. Onishchik, E.B. Vinberg, Lie Groups and Algebraic Groups (Springer, Berlin, 1980)

    MATH  Google Scholar 

  35. I. Penkov, Borel-Weil-Bott theory for classical Lie supergroups. Translated in J. Soviet Math. 51(1), 2108–2140 (1990) [Russian]

    Article  MATH  Google Scholar 

  36. I. Penkov, Characters of strongly generic irreducible Lie superalgebra representations. Internat. J. Math. 9(3), 331–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. I. Penkov, K. Styrkas, Tensor representations of infinite-dimensional root-reductive Lie algebras, in Developments and Trends in Infinite-Dimensional Lie Theory, Progress in Mathematics, vol. 288 (Birkhäuser, Basel, 2011), pp. 127–150

    Google Scholar 

  38. S. Sam, A. Snowden, Stability patterns in representation theory. arXiv:1302.5859

    Google Scholar 

  39. V. Serganova, On generalized root systems. Commun. Algebra 24 (13), 4281–4299 (1996)

    Article  MATH  Google Scholar 

  40. V. Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra gl(m | n). Selecta Math. (N.S.) 2(4), 607–651 (1996)

    Google Scholar 

  41. V. Serganova, A reduction method for atypical representations of classical Lie superalgebras. Adv. Math. 180, 248–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Serganova, On the superdimension of an irreducible representation of a basic classical Lie superalgebra, in Supersymmetry in Mathematics and Physics. Lecture Notes in Mathematics, vol. 2027 (Springer, Heidelberg, 2011), pp. 253–273

    Google Scholar 

  43. V. Serganova, Classical Lie superalgebras at infinity, in Advances in Lie Superalgebras. Springer INdAM Series, vol. 7 (Springer, Berlin, 2014), pp. 181–201

    Google Scholar 

  44. A. Sergeev, The tensor algebra of the tautological representation as a module over the Lie super-algebras gl(n, m) and Q(n). Mat. Sb. 123, 422–430 (1984) [in Russian]

    Google Scholar 

  45. A. Sergeev, The invariant polynomials on simple Lie superalgebras. Represent. Theory 3, 250–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Vishnyakova, On complex Lie supergroups and split homogeneous supermanifolds. Transform. Groups 16(1), 265–285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Y.M. Zou, Categories of finite-dimensional weight modules over type I classical Lie superalgebras. J. Algebra 180, 459–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank the organizers of the workshop in Pisa for giving me the opportunity to give this minicourse and Rita Fioresi for writing the lecture notes. I thank the referee for pointing out numerous missprints in the first version of the paper. I also acknowledge partial support of NSF grant DMS-1303301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Serganova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serganova, V. (2017). Representations of Lie Superalgebras. In: Callegaro, F., Carnovale, G., Caselli, F., De Concini, C., De Sole, A. (eds) Perspectives in Lie Theory. Springer INdAM Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-58971-8_3

Download citation

Publish with us

Policies and ethics