Skip to main content

Synchronization Over the Birkhoff Polytope for Multi-graph Matching

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10310))

Abstract

In this paper we address the problem of simultaneously matching multiple graphs imposing cyclic or transitive consistency among the correspondences. This is obtained through a synchronization process that projects doubly-stochastic matrices onto a consistent set. We overcome the lack of group structure of the Birkhoff polytope, i.e., the space of doubly-stochastic matrices, by making use the Birkhoff-Von Neumann theorem stating that any doubly-stochastic matrix can be seen as the expectation of a distribution over the permutation matrices, and then cast the synchronization problem as one over the underlying permutations. This allows us to transform any graph-matching algorithm working on the Birkhoff polytope into a multi-graph matching algorithm. We evaluate the performance of two classic graph matching algorithms in their synchronized and un-synchronized versions with a state-of-the-art multi-graph matching approach, showing that synchronization can yield better and more robust matches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 74–81 (2005). http://dx.doi.org/10.1109/ICDM.2005.132

  2. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_36

    Chapter  Google Scholar 

  3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  4. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  5. Haussler, D.: Convolution kernels on discrete structures. Technical report UCS-CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999). http://citeseer.ist.psu.edu/haussler99convolution.html

  6. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. 98(8), 4569 (2001)

    Article  Google Scholar 

  7. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  8. Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road network. Preprint, University of New Mexico (2003)

    Google Scholar 

  9. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML, pp. 321–328 (2003)

    Google Scholar 

  10. Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. Adv. NIPS 2013, 1860–1868 (2013)

    Google Scholar 

  11. Schiavinato, M., Gasparetto, A., Torsello, A.: Transitive assignment kernels for structural classification. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 146–159. Springer, Cham (2015). doi:10.1007/978-3-319-24261-3_12

    Chapter  Google Scholar 

  12. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011). http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11

    MathSciNet  MATH  Google Scholar 

  13. Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)

    Article  Google Scholar 

  14. Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common labelling of a set of attributed graphs. Comput. Vis. Image Underst. 115(7), 929–945 (2011)

    Article  MATH  Google Scholar 

  15. Torsello, A.: An importance sampling approach to learning structural representations of shape. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska, USA. IEEE Computer Society (2008). http://dx.doi.org/10.1109/CVPR.2008.4587639

  16. Williams, M.L., Wilson, R.C., Hancock, E.R.: Multiple graph matching with Bayesian inference. Pattern Recogn. Lett. 18, 080 (1997)

    Article  Google Scholar 

  17. Yan, J., Cho, M., Zha, H., Yang, X., Chu, S.M.: A general multi-graph matching approach via graduated consistency-regularized boosting. CoRR abs/1502.05840 (2015). http://arxiv.org/abs/1502.05840

  18. Yan, J., Li, Y., Liu, W., Zha, H., Yang, X., Chu, S.M.: Graduated consistency-regularized optimization for multi-graph matching. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 407–422. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_27

    Chapter  Google Scholar 

  19. Yan, J., Tian, Y., Zha, H., Yang, X., Zhang, Y., Chu, S.M.: Joint optimization for consistent multiple graph matching. In: Proceeding IEEE International Conference on Computer Vision, pp. 1649–1656. IEEE Computer Society (2013)

    Google Scholar 

  20. Yan, J., Wang, J., Zha, H., Yang, X., Chu, S.: Consistency-driven alternating optimization for multigraph matching: a unified approach. IEEE Trans. Image Process. 24(3), 994–1009 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for graph matching. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 329–337. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69905-7_38

    Chapter  Google Scholar 

  22. Zhou, X., Zhu, M., Daniilidis, K.: Multi-image matching via fast alternating minimization. CoRR abs/1505.04845 (2015). http://arxiv.org/abs/1505.04845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Torsello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schiavinato, M., Torsello, A. (2017). Synchronization Over the Birkhoff Polytope for Multi-graph Matching. In: Foggia, P., Liu, CL., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2017. Lecture Notes in Computer Science(), vol 10310. Springer, Cham. https://doi.org/10.1007/978-3-319-58961-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58961-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58960-2

  • Online ISBN: 978-3-319-58961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics