Skip to main content

The Conceptual Elements of Multiple Representations: A Study of Textbooks’ Representations of Electric Current

  • Chapter
  • First Online:
Multiple Representations in Physics Education

Part of the book series: Models and Modeling in Science Education ((MMSE,volume 10))

Abstract

Physics teachers may focus on the forms of multiple representations, but they might not be mindful of the essential or elementary features of a concept. Ainsworth’s (Comput Educ 32(2–3):131–152, 1999) framework may provide some basic ideas of multiple representations, but it does not help to analyse the elementary features of a physical concept and guide students to reconstruct the concept for a more meaningful understanding. Educational Reconstruction (Duit R, Gropengießer H, Kattmann U, Komorek M, Parchmann I, The model of educational reconstruction – A framework for improving teaching and learning science. In: Jorde D, Dillon J (eds) The world of science education: Science education research and practice in Europe. Sense Publishers, Rotterdam, pp 13–47, 2012) approach can complete the multiple representations framework of Ainsworth (Comput Educ 32(2–3):131–152, 1999) in emphasizing two thinking and learning processes: elementarization and reconstruction. To identify essential conceptual elements of electric current for effective implementations of multiple representations, relevant journal papers and physics textbooks were analysed. As a result, we propose five conceptual elements of multiple representations: ‘object’, ‘nature’, ‘cause’, ‘equation’, and ‘condition’. Fundamentally speaking, the concept of electric current can now be more comprehensively analysed and synthesised via multiple representations. Essentially, every conceptual element of electric current can be diagrammatically, graphically, symbolically, or verbally represented. In general, science teachers may present scientific concepts by using multiple representations with these conceptual elements in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Arons (1990) provides four reasons for maintaining the positive current convention in physics: (1) it underlies the definitions of electric field strength and potential difference; (2) the treatment of capacitive and inductive circuit elements; (3) the standard mnemonics of electromagnetism; and (4) the common notations in diagrams of electrical circuits.

  2. 2.

    It is based on the French word intensité. Historically, André-Marie Ampère used the symbol i in formulating the eponymous Ampère’s force law.

  3. 3.

    Historically, Ohm used the equation x = a/(b + l) to model his experimental data. In universities, Ohm’s Law may be symbolically represented as J = σE, where J is the current density at a given location in a conductor, E is the electric field at that location, and σ is the conductivity of a material.

References

  • Adams, S., & Allday, J. (2000). Advanced physics. Oxford: Oxford University Press.

    Google Scholar 

  • Afra, N., Osta, I., & Zoubeir, W. (2009). Students’ alternative conceptions about electricity and effect of inquiry-based teaching strategies. International Journal of Science and Mathematics Education, 7(1), 103–132.

    Article  Google Scholar 

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 32(2–3), 131–152.

    Article  Google Scholar 

  • Ampère, A.-M. (1822). Recuil d'Observations Électro-dynamiques. Paris: Chez Crochard Libraire.

    Google Scholar 

  • Arons, A. B. (1990). A guide to introductory physics teaching. New York: John Wiley & Sons.

    Google Scholar 

  • Ashford, C. E., & Kempson, E. W. E. (1908). The elementary theory of direct current dynamo electricmachinery. Cambridge: The University Press.

    Google Scholar 

  • Cohen, R., Eylon, B., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students’ concepts. American Journal of Physics, 51(5), 407–412.

    Article  Google Scholar 

  • Dancy, M., & Beicher, R. (2006). Impact of animation on assessment of conceptual understanding in physics. Physical Review Special Topics-Physics Education Research, 2, 010104.

    Article  Google Scholar 

  • De Berg, K. C., & Treagust, D. F. (1993). The presentation of gas properties in chemistry textbooks and as reported by science teachers. Journal of Research in Science Teaching, 30(8), 871–882.

    Article  Google Scholar 

  • De Posada, J. M. (1997). Conceptions of high school students concerning the internal structure ofmetals and their electric conduction: Structure and evolution. Science Education, 81(4), 445–467.

    Article  Google Scholar 

  • Duit, R. (1985). The meaning of current and voltage in everyday language and its consequences for understanding the physical concepts of the electric circuit. In R. Duit, W. Jung, & C. v. Rhoeneck (Eds.), Aspects of understanding electricity (pp. 205–214). Schmidt & Klaunig: Kiel.

    Google Scholar 

  • Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction – A framework for improving teaching and learning science. In D. Jorde & J. Dillon (Eds.), The world of science education: Science education research and practice in Europe (pp. 13–47). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Dupin, J. J., & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evolution. Journal of Research in Science Teaching, 24(9), 791–806.

    Article  Google Scholar 

  • Dupin, J. J., & Johsua, S. (1989). Analogies and “modeling analogies” in teaching: Some examples in basic electricity. Science Education, 73(2), 207–224.

    Article  Google Scholar 

  • Fredette, N. H., & Lockhead, J. (1980). Students’ conceptions of simple circuits. The Physics Teacher, 18(3), 194–198.

    Article  Google Scholar 

  • Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29(2), 121–142.

    Article  Google Scholar 

  • Gilbert, J. K., & Treagust, D. (2009). Multiple representations in chemical education. Netherlands: Springer.

    Book  Google Scholar 

  • Gunstone, R., Mulhall, P., & McKittrick, B. (2009). Physics teachers’ perceptions of the difficulty of teaching electricity. Research in Science Education, 39(4), 515–538.

    Article  Google Scholar 

  • Heller, P. M., & Finley, F. N. (1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29(3), 259–275.

    Article  Google Scholar 

  • Homer, B. D., & Plass, J. L. (2010). Expertise reversal for iconic representations in science visualizations. Instructional Science, 38(3), 259–276.

    Article  Google Scholar 

  • Kipnis, N. (2009). A law of physics in the classroom: The case of Ohm’s law. Science & Education, 18(3–4), 349–382.

    Article  Google Scholar 

  • McDermott, L. C., & Shaffer, P. S. (1992). Research as a guide for curriculum development: An example from introductory electricity, Part I: Investigation of student understanding. American Journal of Physics, 60(11), 994–1003.

    Article  Google Scholar 

  • Mulhall, P., McKittrick, B., & Gunstone, R. (2001). A perspective on the resolution of confusions in the teaching of electricity. Research in Science Education, 31(4), 575–587.

    Article  Google Scholar 

  • Osborne, R. (1983). Towards modifying children's ideas about electric current. Research in Science and Technological Education, 1(1), 73–82.

    Article  Google Scholar 

  • Psillos, D., Koumaras, P., & Tiberghien, A. (1988). Voltage presented as a primary concept in an introductory teaching sequence on DC circuits. International Journal of Science Education, 10(1), 29–43.

    Article  Google Scholar 

  • Rehfuss, D. E. (2004). Current concepts consolidated. The Physics Teacher, 42(2), 103–107.

    Article  Google Scholar 

  • Rosengrant, D., Van Heuvelen, A., & Etkina, E. (2009). Do students use and understand free-body diagrams? Physical Review Special Topics-Physics Education Research, 5(1), 010108.

    Article  Google Scholar 

  • Ryan, J. N. (1985). Clarify the language of science. Physics Today, 38(2), 15.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521–537.

    Article  Google Scholar 

  • Shipstone, D. M. (1984). A study of children’s understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185–198.

    Article  Google Scholar 

  • Stocklmayer, S., & Treagust, D. (1996). Images of electricity: How do novices and experts model electric current? International Journal of Science Education, 18(2), 163–178.

    Article  Google Scholar 

  • Stocklmayer, S. M., & Treagust, D. F. (1994). A historical analysis of electric currents in textbooks: A century of influence on physics education. Science & Education, 3(2), 131–154.

    Article  Google Scholar 

  • Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2003). The role of sub-microscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1369.

    Article  Google Scholar 

  • Tsai, C.-H., Chen, H.-Y., Chou, C.-Y., & Lain, K.-D. (2007). Current as the key concept of Taiwanese students’ understandings of electric circuits. International Journal of Science Education, 29(4), 483–496.

    Article  Google Scholar 

  • Van Heuvelen, A., & Zou, X. (2001). Multiple representations of work-energy processes. American Journal of Physics, 69(2), 184–194.

    Article  Google Scholar 

  • Wilczek, F. (2004). Asymptotic freedom: From paradox to paradigm. In F. Wilczek & B. Devine (Eds.) (2006), Fantastic realities: 49 mind journeys and a trip to Stockholm. Singapore: World Scientific.

    Google Scholar 

  • Wong, C. L. (2014). A framework for defining physical concepts. Unpublished Ph.D. thesis. Nanyang Technological University.

    Google Scholar 

  • Wong, C. L., Chu, H. E., & Yap, K. C. (2016). Are alternative conceptions dependent on researcher’s methodology and definition? : A review of empirical studies related to concepts of heat. International Journal of Science and Mathematics Education, 14(3), 1–28.

    Article  Google Scholar 

  • Yap, K. C. (1992). Meaningful understanding of direct proportionality and consistency across different tasks among preservice science teachers. International Journal of Science Education, 14(3), 237–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Leong Wong .

Editor information

Editors and Affiliations

Appendix A: Textbook References

Appendix A: Textbook References

1.1 US Textbooks

  1. 1.

    Bauer, W., & Westfall, G. D. (2011). University Physics with Modern Physics. New York: McGraw-Hill.

  2. 2.

    Cummings, K., Laws, P., Redish, E., & Cooney, P. (2004). Understanding Physics. New Jersey: Wiley.

  3. 3.

    Cutnell J. D., & Johnson, K. W. (2004). Physics (6th ed.). New Jersey: Wiley & Sons.

  4. 4.

    Giambattista, A., Richardson, B. M., & Richardson, R. C. (2004). College Physics. New York: McGraw-Hill.

  5. 5.

    Giancoli, D. C. (2005). Physics: Principles with Applications (6th ed.). Upper Saddle River, NJ.: Prentice Hall.

  6. 6.

    Giordano, N. J. (2010). College Physics. Reasoning and Relationship. Belmont, CA: Cengage Brooks-Cole.

  7. 7.

    Halliday, D., Resnick, R., & Walker, J. (2005). Fundamentals of Physics (7th ed.). New York: Wiley.

  8. 8.

    Hewitt, P. (2006). Conceptual Physics (10th ed.). San Francisco: Addison-Wesley.

  9. 9.

    Hecht, E. (2003). Physics: Algebra/Trigonometry (3rd ed.). Pacific Grove, California: Brooks/Cole Publishing.

  10. 10.

    Hobson, A. (2003). Physics: Concepts and Connections (3rd ed.). New Jersey: Prentice Hall.

  11. 11.

    Kirkpatrick, L. D., & Francis, G. E. (2010). Physics: A Conceptual World View (7th ed.). Belmont, CA: Cengage Brooks-Cole.

  12. 12.

    Knight, R. D. (2004). Physics for Scientists and Engineers with Modern Physics: A Strategic Approach. Boston: Addison Wesley.

  13. 13.

    Reese, R. L. (2000). University Physics. Pacific Grove, California: Brooks/Cole.

  14. 14.

    Sanny, J. & Moebs, W. (1996). University Physics. Dubuque: Wm. C. Brown.

  15. 15.

    Serway, R. A., & Faughn, J. S. (2003). College Physics (6th ed.). Pacific Grove, California: Brooks/Cole.

  16. 16.

    Tipler, P. A., & Mosca, G. P. (2004). Physics for Scientists and Engineers (5th ed.). New York: W. H. Freeman.

  17. 17.

    Tippens, P. E. (2007). Physics (7th ed.). New York: McGraw-Hill.

  18. 18.

    Walker, J. S. (2004). Physics (2nd ed.). Upper Saddle River: Pearson Education International.

  19. 19.

    Wilson, J. D., Buffa, A. J., & Lou, B. (2007). College Physics (6th ed.). New Jersey: Pearson.

  20. 20.

    Young, H. D., & Freedman, R. A. (2004). Sears and Zemansky’s University Physics (11th ed.). California: Addison Wesley.

1.2 UK Textbooks

  1. 1.

    Gibbs, K. (1990). Physics. Cambridge: Cambridge University Press.

  2. 2.

    Breithaupt, J. (2000). Understanding Physics for Advanced Level (4th ed). Cheltenham: Stanley Thorne.

  3. 3.

    Duncan, T. (2000). Advanced Physics (5th ed). London: John Murray.

  4. 4.

    Whelan, P. M., & Hodgson, M. J. (1990). Essential Principles of Physics (2nd ed.). London: John Murray.

  5. 5.

    Hutchings, R. (2000). Physics. Cheltenham: Nelson.

  6. 6.

    Ogborn, J. & Whitehouse, M. (2001). Advancing Physics A2. Bristol: IOP Publishing.

  7. 7.

    Mee, C., & Crundell, M. (2000). AS/A2 Physics. London: Hodder & Stoughton.

  8. 8.

    Lowe T. L., & Rounce, J. F. (1997). Calculations for A-level Physics (3rd ed). Cheltenham: Stanley Thornes.

  9. 9.

    Johnson, K., Hewett, S., Holt, S., Miller, J. (2000). Advanced Physics for You. Cheltenham: Nelson Thornes.

  10. 10.

    England, N. (1999). Physics in perspective. London: Hodder & Stoughton.

  11. 11.

    Dobson, K., Grace, D., & Lovett, D. (2002). Physics (2nd ed.). London: HarperCollins.

  12. 12.

    Nelkon, M., & Parker, P. (1995). Advanced Level Physics. (7th ed). Oxford: Heinemann.

  13. 13.

    Muncaster, R. (1993). A Level Physics. (4th ed). Cheltenham: Nelson Thornes.

  14. 14.

    Adams, S., & Allday, J. (2000). Advanced Physics. Oxford: Oxford University Press.

  15. 15.

    Brodie, D. (2000). Introduction to Advanced Physics. London: John Murray.

  16. 16.

    Kirk, T. (2003). Physics for the IB Diploma. Oxford: Oxford University Press.

  17. 17.

    Ogborn, J., & Whitehouse, M. (2000). Advancing Physics AS. Bristol: Institute of Physics.

  18. 18.

    Sang, D. (2010). Cambridge IGCSE Physics Coursebook. Cambridge: Cambridge University Press.

  19. 19.

    England, N. (2001). Physics Matters (3rd ed.). London: Hodder & Stoughton.

  20. 20.

    Breithaupt, J. (2008). AQA Physics A: A2. Cheltenham: Nelson Thornes.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wong, C.L., Chu, HE. (2017). The Conceptual Elements of Multiple Representations: A Study of Textbooks’ Representations of Electric Current. In: Treagust, D., Duit, R., Fischer, H. (eds) Multiple Representations in Physics Education. Models and Modeling in Science Education, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-58914-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58914-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58912-1

  • Online ISBN: 978-3-319-58914-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics