Skip to main content

Yeast-Based Biosensors for Clinical Diagnostics and Food Control

  • Chapter
  • First Online:
Biotechnology of Yeasts and Filamentous Fungi

Abstract

Science; medicine; clinical diagnostics; biotechnologies, including those in food and beverage industries; as well as environmental technologies need highly selective, sensitive, rapid, and reliable methods of identifying the key ingredients or metabolites which determine the quality of the product or serve as markers for diseases, the physiological state of human organism, or environmental safety. Biosensors are the most promising tool for these aims. Although the most of created biosensors are based on using enzymes as biocatalytic elements, cell sensors, especially microbial ones, have been actively developed only in recent years. A microbial biosensor consists of a transducer in conjunction with immobilized viable or nonviable microbial cells, an economical substitute for enzymes. The target analyte is usually either a substrate or an inhibitor of cell metabolism. In this review, the main achievements in the elaboration of microbial sensors, based on yeast cells, are described, and perspectives of their usage in clinical diagnostics and food control are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeniran A, Sherer M, Tyo K (2015) Yeast-based biosensors: design and applications. FEMS Yeast Res 15(1):1–15

    Article  PubMed  Google Scholar 

  • Akyilmaz E, Dinçkaya E (2005) An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosens Bioelectron 20:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Akyilmaz E, Yaşa I, Dinçkaya E (2006) Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine). Anal Biochem 354(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Akyilmaz E, Erdogan A, Ozturk R et al (2007) Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells. Biosens Bioelectron 22(6):1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Atta NF, Galal A, Ali S (2011) Nanobiosensors for health care, Chapter 4. In: Serra PA (ed) Biosensors for health, environment and biosecurity. doi:10.5772/17996

    Google Scholar 

  • Baronian KH, Downard AJ, Lowen RK et al (2002) Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method. Appl Microbiol Biotechnol 60(1–2):108–113

    CAS  PubMed  Google Scholar 

  • Bereza-Malcolm LT, Mann G, Franks AE (2015) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach review. ACS Synth Biol 4(5):535–546

    Article  CAS  PubMed  Google Scholar 

  • Bermejo C, García R, Straede A et al (2010) Characterization of sensor-specific stress response by transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors in Saccharomyces cerevisiae. OMICS 14(6):679–688

    Article  CAS  PubMed  Google Scholar 

  • Bilan DS, Matlashov ME, Gorokhovatsky AY et al (2014) Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments. Biochim Biophys Acta 1840:951–957

    Article  CAS  PubMed  Google Scholar 

  • Bryden WL (2007) Mycotoxins in the food chain: human health implications. Asia Pac J Clin Nutr 16(1):95–101

    CAS  PubMed  Google Scholar 

  • Chan C, Lehmann M, Tag K, Lung M, Kunze G, Riedel K, Gruendig B, Renneberg R (1999) Measurement of biodegradable substances using the salt-tolerant yeast Arxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate (PCS) part I: construction and characterization of the microbial sensor. Biosens Bioelectron 14(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Article  PubMed  Google Scholar 

  • Dai C, Choi S (2013) Technology and applications of microbial biosensor. OJAB 2:83–93

    Article  Google Scholar 

  • Dmytruk K, Smutok O, Dmytruk O et al (2011) Construction of uricase-overproducing strain of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor. BMC Biotechnol 11:58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragone R, Frazzoli C, Grasso G, Rossi G (2014) Sensor with intact or modified yeast cells as rapid device for toxicological test of chemicals. J Agric Chem Environ 3:35–40

    Google Scholar 

  • Eldridge M, Sanseverino J, Umbuzeiro GA, Sayler GS (2011) Analysis of environmental samples with yeast-based bioluminescent bioreporters, environmental monitoring. In: Ekundayo E (ed) InTech. doi:10.5772/27139. http://www.intechopen.com/books/environmental-monitoring/analysis-of-environmental-samples-with-yeast-based-bioluminescent-bioreporters

  • Filipović-Kovačević Ž, Mikšaj M, Šalamon D (2002) Cyanide determination in fruit brandies by an amperometric biosensor with immobilised Saccharomyces cerevisiae. Eur Food Res Technol 215(4):347–352

    Article  Google Scholar 

  • Fink-Gremmels J (2008) Mycotoxins in cattle feeds and carry-over to dairy milk: a review. Food Addit Contam 25:172–180

    Article  CAS  Google Scholar 

  • Garjonyte R, Melvydas V, Malinauskas A (2006) Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with baker’s yeast Saccharomyces cerevisiae. Bioelectrochemisty 68(2):191–196

    Article  CAS  Google Scholar 

  • Garjonyte R, Melvydas V, Malinauskas A (2008) Effect of yeast pretreatment on the characteristics of yeast-modified electrodes as mediated amperometric biosensors for lactic acid. Bioelectrochemistry 74:188–194

    Article  CAS  PubMed  Google Scholar 

  • Garjonyte R, Melvydas V, Malinauskas A (2009) Amperometric biosensors for lactic acid based on baker’s and wine yeast. Microchim Acta 164:177–183

    Article  CAS  Google Scholar 

  • Gonchar MV, Maidan MM, Moroz OM et al (1998) Microbial O2- and H2O2- electrode sensors for alcohol assays based on the use of permeabilized mutant yeast cells as the sensitive bioelements. Biosens Bioelectron 139:945–952

    Article  Google Scholar 

  • Gonchar M, Maidan M, Korpan Y et al (2002) Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res 2:307–314

    Article  CAS  PubMed  Google Scholar 

  • He W, Yuan S, Zhong WH et al (2016) Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 100(3):1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4(2):241–263

    Article  PubMed Central  Google Scholar 

  • Heiskanen A, Yakovleva J, Spegel C et al (2004) Amperometric monitoring of redox activity in living yeast cells: comparison of menadione and menadione sodium bisulfite as electron transfer mediators. Electrochem Commun 6:219–224

    Article  CAS  Google Scholar 

  • Heiskanen J, Saksa T, Luoranen J (2013) Soil preparation method affects outplanting success of Norway spruce container seedlings on till soils susceptible to frost heave. Silva Fennica 47(1). http://www.silvafennica.fi/article/893

  • Hernández-Orte P, Cacho JF, Ferreira V (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study. J Agric Food Chem 50(10):2891–2899

    Article  PubMed  Google Scholar 

  • Huang Z, Ough CS (1989) Effect of vineyard locations, varieties and rootstocks on the juice amino acid composition of several cultivars. Am J Enol Vitic 40:135–139

    CAS  Google Scholar 

  • Hung KW, Suen MF, Chen YF et al (2011) Detection of water toxicity using cytochrome P450 transgenic zebrafish as live biosensor: for polychlorinated biphenyls toxicity. Biosens Bioelectron 31(1):548–553

    Article  PubMed  Google Scholar 

  • Ikebukuro K, Honda M, Nakanishi K et al (1996) Flow-type cyanide sensor using an immobilized microorganism. Electroanalysis 8(10):876–879

    Article  CAS  Google Scholar 

  • Ino K, Kitagawa Y, Watanabe T et al (2009) Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes. Electrophoresis 19:3406–3412

    Article  Google Scholar 

  • Ishii J, Oda A, Togawa S et al (2014) Microbial fluorescence sensing for human neurotensin receptor type 1 using Gα-engineered yeast cells. Anal Biochem 1(446):37–43

    Article  Google Scholar 

  • Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98(4):541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarque S, Bittner M, Blaha L, Hilscherova K (2016) Yeast biosensors for detection of environmental pollutants: current state and limitations review article. Trends Biotechnol 34(5):408–419

    Article  CAS  PubMed  Google Scholar 

  • Karalemas ID, Georgiou CA, Papastathopoulos DS (2000) Construction of a L-lysine biosensor by immobilizing lysine oxidase on a gold-poly(o-phenylenediamine) electrode. Talanta 53:391–402

    Article  CAS  PubMed  Google Scholar 

  • Karkovska M, Smutok О, Stasyuk N et al (2015) L-lactate-selective microbial sensor based on flavocytochrome b 2-enriched yeast cells using recombinant and nanotechnology approaches. Talanta 144:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Karube I, Sode K (1989) Biosensors for fermentation process control. In: Ghose TK (ed) Bioprocess engineering: the first generation. Chapman Hall, London

    Google Scholar 

  • Karube I, Suzuki S (1983) Application of biosensor in fermentation processes, Chapter 8. In: Tsao GT (ed) Annual reports on fermentation processes, vol 6. Academic, New York

    Google Scholar 

  • Karube I, Tamiya E (1987) Biosensors for the food industry. Food Biotechnol 1:147–165

    Article  CAS  Google Scholar 

  • Kelly SC, O’Connell PJ, O’Sullivan CK et al (2000) Development of an interferent free amperometric biosensor for determination of L-lysine in food. Anal Chim Acta 412:111–119

    Article  CAS  Google Scholar 

  • Korpan YI, Gonchar MV, Starodub NF et al (1993) A Cell biosensor specific for formaldehyde based on pH-sensitive transistors coupled to methylotrophic yeast cells with genetically adjusted metabolism. Anal Biochem 215(2):216–222

    Article  CAS  PubMed  Google Scholar 

  • Korpan YI, Dzyadevich SV, Zharova VP et al (1994) Conductometric biosensor for ethanol detection based on whole yeast cells. Ukr Biokhim Zh 66(1):78–82

    CAS  PubMed  Google Scholar 

  • Kostesha NV, Almeida JR, Heiskanen AR et al (2009) Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae. Anal Chem 81(24):9896–8901

    Article  CAS  PubMed  Google Scholar 

  • Kraly JR, Holcomb RE, Guan Q et al (2009) Review: microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653(1):23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulys J, Wang L, Razumas V (1992) Sensitive yeast bioelectrode to L-lactate. Electroanalysis 4:527–532

    Article  CAS  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  PubMed  Google Scholar 

  • Lim JW, Ha D, Lee J et al (2015) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3(61):1–13

    Google Scholar 

  • Lobanov AV, Borisov IA, Gordon SH et al (2001) Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosens Bioelectron 16:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Mascini M, Memoli A (1986) Comparison of microbial sensors based on amperometric and potentiometric electrodes. Anal Chim Acta 182:113–122

    Article  CAS  Google Scholar 

  • Mello LD, Kubota LT (2002) Review of the use of bio-sensors as analytical tools in the food and drink industries. Food Chem 77(2):237–256

    Article  CAS  Google Scholar 

  • Miao Y, McCammon JA (2016) G-protein coupled receptors: advances in simulation and drug discovery. Curr Opin Struct Biol 41:83–89

    Article  CAS  PubMed  Google Scholar 

  • Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195

    Article  PubMed  Google Scholar 

  • Nakamura H, Shimomura-Shimizu M, Karube I (2008) Development of microbial sensors and their application. Adv Biochem Eng Biotechnol 109:351–394

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Ishii J, Kondo A (2015) Applications of yeast-based signaling sensor for characterization of antagonist and analysis of site-directed mutants of the human serotonin 1A receptor. Biotechnol Bioeng 112(9):1906–1915

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Ikebukuro K, Karube I (1996) Determination of cyanide using a microbial sensor. Appl Biochem Biotechnol 60(2):97–106

    Article  CAS  PubMed  Google Scholar 

  • Narsaiah K, Jha SN, Bhardwaj R et al (2012) Optical biosensors for food quality and safety assurance – a review. J Food Sci Technol 49(4):383–406

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Halldorson VS, Duran NL (2003) Bioluminescent bacteria: lux genes as environmental biosensors. Braz J Microbiol 34(2):91–96

    Article  Google Scholar 

  • Otles S, Yalcin B (2012) Review on the application of nanobiosensors in food analysis. Acta Sci Pol Technol Aliment 11(1):7–18

    CAS  PubMed  Google Scholar 

  • Pham H, Giersberga M, Uhligb S et al (2012) Estra monitor – a monitor for amperometric detection of estrogenic activity with Arxula adeninivorans yeast cells as the biocomponent. Sens Actuators Chem 161:137–145

    Article  CAS  Google Scholar 

  • Ponamoreva ON, Arliapov VA, Alferov VA, Reshetilov AN (2011) Microbial biosensors for detection of biological oxygen demand (a review). Prikl Biokhim Mikrobiol 47(1):5–15

    CAS  PubMed  Google Scholar 

  • Racek J (1991) A yeast biosensor for glucose determination. Appl Microbiol Biotechnol 34:473–477

    Article  CAS  PubMed  Google Scholar 

  • Racek J, Musil J (1987a) Biosensor for lactate determination in biological fluids. I. Construction and properties of the biosensor. Clin Chim Acta 162:129–139

    Article  CAS  PubMed  Google Scholar 

  • Racek J, Musil J (1987b) Biosensor for lactate determination in biological fluids. 2. Interference studies. Clin Chim Acta 167:59–65

    Article  CAS  PubMed  Google Scholar 

  • Reshetilov AN, Lobanov AV, Morozova NO et al (1998) Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial sensor and a glucose enzyme electrode. Biosens Bioelectron 13:787–793

    Article  CAS  PubMed  Google Scholar 

  • Reshetilov AN, Trotsenko JA, Morozova NO et al (2001) Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensors for detection of ethanol. Process Chem 36(10):1015–1020

    CAS  Google Scholar 

  • Rotariu L, Bala C (2003) New type of ethanol microbial biosensor based on a highly sensitive amperometric oxygen electrode and yeast cells. Anal Lett 36(11):2459–2471

    Article  CAS  Google Scholar 

  • Rotariu L, Bala C, Magearu V (2002) Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Anal Chim Acta 458(1):215–222

    Article  CAS  Google Scholar 

  • Rotariu L, Bala C, Magearu V (2003) Microbial biosensors for ethanol determination in alcoholic beverages. Ann Univ Buchar XII(I–II):69–76

    Google Scholar 

  • Rotariu L, Bala C, Magearu V (2004) New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Anal Chim Acta 513:119–123

    Article  CAS  Google Scholar 

  • Sankarankutty KM (2014) Biosensors and their applications for ensuring food safety. Global J Pathol Microbiol 2:15–21

    Article  Google Scholar 

  • Saurina J, Hernández-Cassou S, Alegret S, Fàbregas E (1999) Amperometric determination of lysine using a lysine oxidase biosensor based on rigid-conducting composites. Biosens Bioelectron 14:211–220

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RD, Karube I (1998) Biotechnology. In: Rehm HJ, Reed G (eds) Biosensors and bioelectronics, vol 6b. VCH Verlagsgesellschaft, Weinheim, pp 317–365

    Google Scholar 

  • Shimomura-Shimizu M, Karube I (2010a) Applications of microbial cell sensors. Biochem Biotechnol 118:1–30

    CAS  Google Scholar 

  • Shimomura-Shimizu M, Karube I (2010b) Yeast based sensors. Adv Biochem Eng Biotechnol 117:1–19

    CAS  PubMed  Google Scholar 

  • Shkil H, Stoica L, Dmytruk K et al (2009) Bioelectrochemical detection of L-lactate respiration using genetically modified Hansenula polymorpha yeast cells overexpressing flavocytochrome b2. Bioelectrochemistry 76:175–179

    Article  CAS  PubMed  Google Scholar 

  • Smutok O, Dmytruk K, Gonchar M et al (2007) Permeabilized cells of flavocytochrome b 2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23:599–605

    Article  CAS  PubMed  Google Scholar 

  • Smutok O, Dmytruk K, Karkovska M et al (2014) D-lactate-selective amperometric biosensor based on the cell debris of the recombinant yeast Hansenula polymorpha. Talanta 125:227–232

    Article  CAS  PubMed  Google Scholar 

  • Spayd SE, Wample RL, Evans RG et al (1994) Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am J Enol Vitic 45:34–42

    CAS  Google Scholar 

  • Stasyuk NY, Gayda GZ, Gonchar MV (2014) L-arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sens Actuat B Chem 204:515–521

    Article  CAS  Google Scholar 

  • Sun JZ, Peter Kingori G, Si RW et al (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71(6):801–809

    Article  CAS  PubMed  Google Scholar 

  • Svitel J, Curilla O, Tkac J (1998) Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnol Appl Biochem 27(2):153–158

    CAS  PubMed  Google Scholar 

  • Thevenot D, Toth K, Durst R et al (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  PubMed  Google Scholar 

  • Tkac J, Vostiar I, Gorton L et al (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens Bioelectron 18:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Turner AP, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, London

    Google Scholar 

  • Ullah A, Orij R, Brul S et al (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8377–8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uthurry CA, Lepe JA, Lombardero J et al (2006) Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem 94:262–270

    Article  CAS  Google Scholar 

  • Valima A, Kivisto AT, Leskinen PI et al (2010) A novel biosensor for the detection of zearalenone family mycotoxins in milk. J Microb Met 80(1):44–48

    Article  Google Scholar 

  • Vevea JD, Wolken DM, Swayne TC et al (2013) Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. J Vis Exp 77:e50633

    Google Scholar 

  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications an overview. Front Bioeng Biotechnol 4(11):1–9

    Google Scholar 

  • Voronova E, Iliasov P, Reshetilov A (2008) Development, investigation of parameters and estimation of possibility of adaptation of Pichia angusta based microbial sensor for ethanol detection. Anal Lett 41(3):377–391

    Article  CAS  Google Scholar 

  • Wang S, Horn PJ, Liou LC et al (2013) A peroxisome biogenesis deficiency prevents the binding of alpha-synuclein to lipid droplets in lipid-loaded yeast. Biochem Biophys Res Commun 438(2):452–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woutersen M, Belkin S, Brouwer B et al (2011) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400:915–929

    Article  CAS  PubMed  Google Scholar 

  • Yagi K (2006) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 3(6):1251–1258

    Google Scholar 

  • Yano Y, Numata M, Hachiya H et al (2001) Application of a microbial sensor to the quality control of meat freshness. Talanta 54:255–262

    Article  CAS  PubMed  Google Scholar 

  • Yudina NY, Arlyapov VA, Chepurnova MA, Alferov SV, Reshetilov AN (2015) A yeast co-culture-based biosensor for determination of waste water contamination levels. Enzyme Microb Technol 78:46–53

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu M, Su Y et al (2012) A targeted in vivo RNAi screen reveals deubiquitinases as new regulators of notch signaling. G3 (Bethesda) 2(12):1563–1575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhailo Gonchar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gonchar, M., Smutok, O., Karkovska, M., Stasyuk, N., Gayda, G. (2017). Yeast-Based Biosensors for Clinical Diagnostics and Food Control. In: Sibirny, A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham. https://doi.org/10.1007/978-3-319-58829-2_14

Download citation

Publish with us

Policies and ethics