Skip to main content

Biosensors Based on Yeast/Fungal Cells

  • Chapter
  • First Online:
Biotechnology of Yeasts and Filamentous Fungi

Abstract

Yeast cells can be utilized as whole-cell biosensors for the detection of many target analytes. This is mainly because the latest molecular biology techniques allowed modification of the yeast genome to give the cells useful metabolic properties. The production of correctly folded recombinant proteins, and more particularly receptors, in yeast is nowadays very often successful, and the implementation of diverse reporting strategies is documented. A number of yeast whole-cell biosensors are now being used in many laboratories, with some of them available commercially. One of the major targets of these biosensors is the endocrine disruptors, a class of organic molecules which can disturb vertebrate endocrine system and therefore presents a potential threat to the environment. Recent research has focused on building new biosensors using other receptors such as the G protein-coupled receptors and the thyroid receptor. In this chapter, we will present a selection of newly developed biosensors and the different reporting strategies used to transduce the binding event into a measureable signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeniran A, Sherer M, Tyo KEJ (2015) Yeast-based biosensors: design and applications. FEMS Yeast Res 15:1–15

    Article  PubMed  Google Scholar 

  • Ault AD, Broach JR (2006) Creation of GPCR-based chemical sensors by directed evolution in yeast. Protein Eng Des Sel 19:1–8

    Article  CAS  PubMed  Google Scholar 

  • Balsiger HA, de la Torre R, Lee WY, Cox MB (2010) A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration, or sterilization. Sci Total Environ 408:1422–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck V, Pfitscher A, Jungbauer A (2005) GFP-reporter for high throughput assay to monitor estrogenic compounds. J Biochem Biophys Methods 64:19–37

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee GB, Khurana SMP (2014) In vitro reporter assays for screening of chemicals that disrupt androgen signaling. J Toxicol 2014:701752. doi:10.1155/2014/701752

    Google Scholar 

  • Bovee TF, Helsdingen RJ, Hamers AR, Brouwer BA, Nielen MW (2011) Recombinant cell assay for the detection of (gluco)corticosteroids and endocrine-disrupting potencies of several environmental PCB contaminants. Anal Bioanal Chem 401:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovee TF, Helsdingen RJR, Koks P, Kuiper HA, Hoogenboom RLAP, Keijer J (2004) Development of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein. Gene 325:187–200

    Article  CAS  PubMed  Google Scholar 

  • Buchinger S, Spira D, Bröder K, Schlüsener M, Ternes T, Reifferscheid G (2013) Direct coupling of thin-layer chromatography with a bioassay for the detection of estrogenic compounds, application for effect-directed analysis. Anal Chem 85:7248–7256

    Article  CAS  PubMed  Google Scholar 

  • Chamas A, Nieter A, Pham HTM, Giersberg M, Hettwer K, Uhlig S, Simon K, Baronian K, Kunze G (2015) Development of a recombinant Arxula adeninivorans cell bioassay for the detection of molecules with progesterone activity in wastewater. Anal Bioanal Chem 407:8109–8120

    Article  CAS  PubMed  Google Scholar 

  • Chamas A, Pham HTM, Jähne M, Hettwer K, Uhlig S, Simon K, Einspanier A, Baronian K, Kunze G (2017) Simultaneous detection of three sex steroid hormone classes using a novel yeast-based biosensor. Biotechnol Bioeng. doi:10.1002/bit.26249

  • Chatterjee S, Kumar V, Majumder CB, Roy P (2008) Screening of some anti-progestin endocrine disruptors using a recombinant yeast based in vitro bioassay. Toxicol In Vitro 22:788–798

    Article  CAS  PubMed  Google Scholar 

  • Cho EM, Lee HS, Eom CY, Ohta A (2010) Construction of high sensitive system for endocrine disruptors with yeast n-alkane –assimilating Yarrowia lipolytica. J Microbiol Biotechnol 20:1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Chu WL, Shiizaki K, Kawanishi M, Kondo M, Yagi T (2009) Validation of a new yeast-based reporter assay consisting of human estrogen receptors alpha/beta and coactivators SRC-1: application for detection of estrogenic activity in environmental samples. Environ Toxicol 24:513–529

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5:561–573

    Article  CAS  PubMed  Google Scholar 

  • Fent K (2015) Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effect and risk assessment. Environ Int 84:115–130

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Tsuchiya K, Makishima H, Tsuchiyama K, Mulchandani A, Kuroda K, Ueda M, Suye SI (2010) Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP. Biotechnol J 5:515–519

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann L, Bielak H, Behr M, Itzel F, Lyko S, Simon A, Kunze G, Dopp E, Wagner M, Tuerk J (2016) (Anti-)estrogenic and (anti-)androgenic effects in wastewater during advanced treatment: comparison of three in vitro bioassays. Environ Sci Pollut Res. doi:10.1007/s11356-016-7165-7174

  • Gerlach TK, Kaiser C, Körner M, Hettwer K, Uhlig S, Simon K, Baronian K, Kunze G (2014) Development and assessment of a novel Arxula adeninivorans androgen screen (A-YAS) assay and its application in analysis of cattle urine. Sci Total Environ 490:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Hahn T, Tag K, Riedel K, Uhlig S, Baronian K, Gellissen G, Kunze G (2006) A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 21:2078–2085

    Article  CAS  PubMed  Google Scholar 

  • Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60:69–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabiersch G, Rajasärkkä J, Tuomela M, Hatakka A, Virta M, Steffen K (2013) Bioluminescent yeast assay for detection of organotin compounds. Anal Chem 85:5740–5745

    Article  CAS  PubMed  Google Scholar 

  • Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40:241–258

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Uhlig S, Gerlach T, Körner M, Simon K, Kunath K, Florschütz K, Baronian K, Kunze G (2010) Evaluation and validation of a novel Arxula adeninivorans estrogen screen (nAES) assay and its application in analysis of wastewater, seawater, brackish water and urine. Sci Total Environ 408:6017–6026

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi M, Ohnisi K, Takigami H, Yagi T (2013) Simple and rapid yeast reporter bioassay for dioxin screening: evaluation of the dioxin-like compounds in industrial and municipal waste incineration plants. Environ Sci Pollut Res Int 20:2993–3002

    Article  CAS  PubMed  Google Scholar 

  • Khadilkar KS, Bandgar T, Shivane V, Lila A, Shah N (2013) Current concepts in blood glucose monitoring. Indian J Endocrinol Metab 17(suppl 3):S643–S649

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingelhöfer I, Morlock GE (2014) Sharp-bounded zones link to the effect in planar chromatography-bioassay-mass spectrometry. J Chromatogr A 1360:288–295

    Article  PubMed  Google Scholar 

  • Klingelhöfer I, Morlock GE (2015) Bioprofiling of surface/wastewater and bioquantitation of discovered endocrine-active compounds by streamlined direct bioautography. Anal Chem 87:11098–11104

    Article  PubMed  Google Scholar 

  • Lee HS, Cho EM, Jung JH, Ohta A (2007) Evaluation on antagonist activities of polycyclic aromatic hydrocarbons using the yeast two-hybrid detection system for endocrine disruptors. Environ Monit Assess 129:87–95

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 566:200–210

    Article  Google Scholar 

  • Leskinen P, Michelini E, Picard D, Karp M, Virta M (2005) Bioluminescent yeast assay for detecting estrogenic and androgenic activity in different matrices. Chemosphere 61:259–266

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ma M, Wang Z (2008) A two-hybrid yeast assay to quantify the effects of xenobiotics on thyroid hormone-mediated gene expression. Environ Toxicol Chem 27:159–167

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ren S, Han S, Li N (2014) A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization. Chemosphere 100:139–145

    Article  CAS  PubMed  Google Scholar 

  • Michelini E, Magliulo M, Leskinen P, Virta M, Karp M, Roda A (2005) Recombinant cell-based bioluminescence assay for androgen bioactivity determination in clinical samples. Clin Chem 51:1995–1998

    Article  CAS  PubMed  Google Scholar 

  • Miller CA (1999) A human aryl hydrocarbon receptor signaling pathway constructed in yeast displays additive responses to ligand mixtures. Toxicol Appl Pharmacol 160:297–303

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Tan X, Wilson M, Bhattacharyya S, Ludwig S (2010) Single plasmids expressing human steroid receptors and a reporter gene for use in yeast signaling assays. Plasmid 63:73–78

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani A, Rogers KR (eds) (1998) Enzyme and microbial biosensors: techniques and protocols. Humana Press, Totowa

    Google Scholar 

  • Pham HTM, Chamas A, Nieter A, Giersberg M, Rutten T, Gehrmann L, Hettwer K, Tuerk J, Uhlig S, Simon K, Baronian K, Kunze G (2016) Determination of glucocorticoids using photometric (A-YGS) and spectrofluorometric (A-YGFS) bioassays based on modified Arxula adeninivorans cells: applications in environmental analysis. Sensor Actuator B-Chem 223:540–549

    Article  CAS  Google Scholar 

  • Pham HTM, Giersberg M, Gehrmann L, Hettwer K, Tuerk J, Uhlig S, Hanke G, Weisswange P, Simon K, Baronian K, Kunze G (2015) The determination of pharmaceuticals using a recombinant Arxula adeninivorans whole-cell biosensor. Sensor Actuator B-Chem 211:439–448

    Article  CAS  Google Scholar 

  • Pham HTM, Giersberg M, Uhlig S, Hanke G, Simon K, Kunath K, Baronian K, Kunze G (2012) EstraMonitor – a monitor for amperometric detection of estrogenic activity with Arxula adeninivorans yeast cells as the biocomponent. Sens Actuator B-Chem 161:137–145

    Article  CAS  Google Scholar 

  • Pham HTM, Kunath K, Gehrmann L, Giersberg M, Tuerk J, Uhlig S, Hanke G, Simon K, Baronian K, Kunze G (2013) Application of modified Arxula adeninivorans yeast cells in an online biosensor for the detection of estrogenic compounds in wastewater samples. Sens Actuator B-Chem 185:628–637

    Article  CAS  Google Scholar 

  • Rajasärkkä J, Virta M (2013) Characterization of a bisphenol A specific yeast bioreporter utilizing the bisphenol A-targeted receptor. Anal Chem 85:10067–10074

    Article  PubMed  Google Scholar 

  • Riedel K, Kunze G, Baronian KHR (eds) (2006) Biosensors and bioassays based on microorganisms. Research Signpost, Kerala

    Google Scholar 

  • Riedel K, Kunze G, Konig A (2002) Microbial sensors on a respiratory basis for wastewater monitoring. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 81–118

    Google Scholar 

  • Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

  • Sanseverino J, Elridge ML, Layton AC, Easter JP, Yarbrough J, Schultz TW, Sayler GS (2008) Screening of potentially hormonally active chemicals using bioluminescent yeast bioreporters. Toxicol Sci 107:122–134

    Article  PubMed  Google Scholar 

  • Sanseverino J, Gupta RK, Layton AC, Patterson SS, Ripp SA, Saidak L, Simpson ML, Schulz TW, Sayler GS (2005) Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl Environ Microbiol 71:4455–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shantilatha P, Varma S, Mitra CK (2003) Designing a simple biosensor. In: Malhotra BD, Turner APF (eds) Advances in biosensors: perspectives in biosensors. JAI Press, Elsevier, Netherlands, pp 1–17

    Chapter  Google Scholar 

  • Shiizaki K, Asai S, Ebata S, Kawanishi M, Yagi T (2010) Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors alpha and beta. Toxicol In Vitro 24:638–644

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chron Young Scientists 2:21–25

    Article  Google Scholar 

  • Tag K, Hahn T, Riedel K, Kunze G (2006) Assays and microbial biosensors for detection of endocrine disruptors. In: Riedel K, Kunze G, Baronian KHR (eds) Biosensors and bioassays based on microorganisms. Research Signpost, Kerala, pp 211–228

    Google Scholar 

  • Turner APF, Karube I, Wilson GS (eds) (1992) Biosensors: fundamentals and applications. Mir Publishers, Moscow

    Google Scholar 

  • Viswanath G, Halder S, Divya G, Majumder CB, Roy P (2008) Detection of potential (anti)progestagenic endocrine disruptors using a recombinant human progesterone receptor binding and transactivation assay. Cell Mol Endocrinol 295:1–9

    Article  CAS  Google Scholar 

  • Wang H, Lang Q, Liang B, Liu A (2015) Electrochemical glucose biosensor based on glucose oxidase displayed on yeast surface. Methods Mol Biol 1319:233–243

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Kunze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chamas, A., Pham, H.T.M., Baronian, K., Kunze, G. (2017). Biosensors Based on Yeast/Fungal Cells. In: Sibirny, A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham. https://doi.org/10.1007/978-3-319-58829-2_12

Download citation

Publish with us

Policies and ethics