Skip to main content

Abstract

The Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model recommended as a decision support tool for deriving optimal site-specific fertilizer rates for cassava has limited ability to estimate water-limited yields. We assessed potential and water-limited yields based on the light interception and utilization (LINTUL) modelling approach in order to enhance the determination of fertilizer requirements for cassava production in Southern Togo. Data collected in 2 years field experiments in Sevekpota and Djakakope were used. Potential ranged from 12.2 to 17.6 Mg ha−1, and water-limited yields from 10.4 to 14.5 Mg ha−1. The simulated average fertilizer requirements were 121 kg N, 2 kg P and no K ha−1 for a target yield of 9.3 Mg ha−1 at Sevekpota, and 103 kg N, 6 kg P and 175 kg K ha−1 for a target yield of 9.7 Mg ha−1 at Djakakope. The variability of fertilizer requirements was attributed to differences in indigenous soil fertility and water-limited yields. The latter correlated well with rainfall variability over years and sites. Integrating LINTUL output with QUEFTS helped account for location-specific weather seasonal variability and enhanced assessment of fertilizer requirement for cassava production in Southern Togo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves, A. A. C. (2002). Cassava botany and physiology. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava: Biology, production and utilization. Wallingford: CABI.

    Google Scholar 

  • Carsky, R. J., & Toukourou, M. A. (2005). Identification of nutrients limiting cassava yield maintenance on a sedimentary soil in southern Benin, West Africa. Nutrient Cycling in Agroecosystems, 71, 151–162.

    Article  CAS  Google Scholar 

  • Connor, D. J., Cock, J. H., & Parra, G. E. (1981). Response of cassava to water shortage I. Growth and yield. Field Crops Research, 4, 181–200.

    Article  Google Scholar 

  • Ezui, K. S. (2017). Understanding the productivity of cassava in West Africa. Ph.D. thesis, Plant Production System, Graduate School of Production Ecology and Resource Conservation, Wageningen University, The Netherlands.

    Google Scholar 

  • Ezui, K. S., Franke, A. C., Mando, A., Ahiabor, B. D. K., Tetteh, F. M., Sogbedji, J., Janssen, B. H., & Giller, K. E. (2016). Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Research, 185, 69–78.

    Article  Google Scholar 

  • Ezui, K. S., Franke, A. C., Leffelaar, P. A., Mando, A., van Heerwaarden, J., Sanabria, J., Sogbedji, J. M., & Giller, K. E. (2017). Water and radiation use efficiencies explain the effect of potassium on the productivity of cassava. European Journal of Agronomy, 83, 28–39.

    Article  CAS  Google Scholar 

  • FAOSTAT. (2014). FAO statistics. Rome: FAO Statistics Division.

    Google Scholar 

  • Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.

    Article  Google Scholar 

  • Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7, 51–73.

    Article  CAS  Google Scholar 

  • Matthews, R. B., & Hunt, L. A. (1994). GUMCAS: A model describing the growth of cassava (Manihot esculenta L. Crantz). Field Crops Research, 36, 69–84.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 281, 277–294.

    Article  Google Scholar 

  • Odedina, S. A., Odedina, J. N., Ogunkoya, M. O., & Ojeniyi, S. O. (2009). Agronomic evaluation of new cassava varieties introduced to farmers in Nigeria. In African crop science conference proceedings (pp. 77–80). Uganda: African Crop Science Society.

    Google Scholar 

  • Sieverding, E., & Howeler, R. H. (1985). Influence of species of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization. Plant and Soil, 88, 213–221.

    Article  Google Scholar 

  • Singh, U., Matthews, R. B., Griffin, T. S., Ritchie, J. T., Hunt, L. A., & Goenaga, R. (1998). Modeling growth and development of root and tuber crops. Systems Approaches for Sustainable Agricultural Development, 7, 129–156.

    Article  Google Scholar 

  • Smaling, E. M. A., Nandwa, S. M., & Janssen, B. H. (1997). Soil fertility in Africa is at stake! In R. J. Buresh, P. A. Sanchez, & F. G. Calhoun (Eds.), Replenishing soil fertility in Africa. Wisconsin: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Somana, K., & Nkpenu, E. K. (2008). Bien cultiver et transformer le manioc. In K. Tetevi, D. K. Tsatsu, B. Badjare, & A. Ale Gonh-Goh (Eds.), Collection brochures et fiches techniques. 18. Lomé: Institut Togolais de Recherche Agronomique.

    Google Scholar 

  • Spitters, C. J. T. (1990). Crop growth models: Their usefulness and limitations. In Acta Horticulturae (pp. 349–368). Leuven: International Society for Horticultural Science (ISHS).

    Google Scholar 

  • Spitters, C. J. T., & Schapendonk, A. H. C. M. (1990). Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil, 123, 193–203.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support for this study was provided by the International Fund for Agricultural Development (IFAD) and the United States Agency for International Development (USAID), to whom we are grateful. We also thank K. Koukoudé, K. Gbedevi and E. Kpodo for supporting data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodjovi Senam Ezui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezui, K.S., Leffelaar, P.A., Franke, A.C., Mando, A., Giller, K.E. (2018). Decision Support System for Site-Specific Fertilizer Recommendations in Cassava Production in Southern Togo. In: Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J. (eds) Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-58792-9_8

Download citation

Publish with us

Policies and ethics