Skip to main content

MAP Image Labeling Using Wasserstein Messages and Geometric Assignment

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Abstract

Recently, a smooth geometric approach to the image labeling problem was proposed [1] by following the Riemannian gradient flow of a given objective function on the so-called assignment manifold. The approach evaluates user-defined data term and additionally performs Riemannian averaging of the assignment vectors for spatial regularization. In this paper, we consider more elaborate graphical models, given by both data and pairwise regularization terms, and we show how they can be evaluated using the geometric approach. This leads to a novel inference algorithm on the assignment manifold, driven by local Wasserstein flows that are generated by pairwise model parameters. The algorithm is massively edge-parallel and converges to an integral labeling solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Iterative multiplicative filters for data labeling. Int. J. Comput. Vis. 1–19 (2017). http://dx.doi.org/10.1007/s11263-017-0995-9

  3. Brualdi, R.: Combinatorial Matrix Classes. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In: Proceedings of the NIPS (2013)

    Google Scholar 

  5. Cuturi, M., Peyré, G.: A smoothed dual approach for variational wasserstein problems. SIAM J. Imag. Sci. 9(1), 320–343 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danskin, J.: The theory of max min with applications. SIAM J. Appl. Math. 14, 641–664 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015)

    Article  MathSciNet  Google Scholar 

  8. Kolouri, S., Park, S., Thorpe, M., Slepcev, D., Rohde, G.: Transport-based analysis, modeling, and learning from signal and data distributions (2016). preprint: https://arxiv.org/abs/1609.04767

  9. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peyré, G.: Entropic approximation of wasserstein gradient flows. SIAM J. Imag. Sci. 8(4), 2323–2351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rockafellar, R.: On a special class of functions. J. Opt. Theor. Appl. 70(3), 619–621 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schmidt, M.: UGM: Matlab code for undirected graphical models, January 2017

    Google Scholar 

  13. Schneider, M.: Matrix scaling, entropy minimization, and conjugate duality (II): the dual problem. Math. Program. 48, 103–124 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    MATH  Google Scholar 

  15. Weiss, Y.: Comparing the mean field method and belief propagation for approximate inference in MRFs. In: Advanced Mean Field Methods: Theory and Practice, pp. 229–240. MIT Press (2001)

    Google Scholar 

  16. Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Patt. Anal. Mach. Intell. 29(7), 1165–1179 (2007)

    Article  Google Scholar 

  17. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. Trans. I. Theor. 51(7), 2282–2312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support by the German Science Foundation, grant GRK 1653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie Åström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Åström, F., Hühnerbein, R., Savarino, F., Recknagel, J., Schnörr, C. (2017). MAP Image Labeling Using Wasserstein Messages and Geometric Assignment. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics