Skip to main content

Performance Bounds for Cosparse Multichannel Signal Recovery via Collaborative-TV

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

We consider a new class of regularizers called collaborative total variation (CTV) to cope with the ill-posed nature of multichannel image reconstruction. We recast our reconstruction problem in the analysis framework from compressed sensing. This allows us to derive theoretical measurement bounds that guarantee successful recovery of multichannel signals via CTV regularization. We derive new measurement bounds for two types of CTV from Gaussian measurements. These bounds are proved for multichannel signals of one and two dimensions. We compare them to empirical phase transitions of one-dimensional signals and obtain a good agreement especially when the sparsity of the analysis representation is not very small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duran, J., Möller, M., Sbert, C., Cremers, D.: Collaborative total variation: a general framework for vectorial TV models. SIAM J. Imaging Sci. 9(1), 116–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shikhaliev, P., Fritz, S.: Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application. Phys. Med. Biol. 56(7), 1905–1930 (2011)

    Article  Google Scholar 

  3. Semerci, O., Hao, N., Kilmer, M., Miller, E.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)

    Article  MathSciNet  Google Scholar 

  4. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  5. Chandrasekaran, V., Recht, B., Parrilo, P., Willsky, A.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kabanava, M., Rauhut, H., Zhang, H.: Robust analysis \(\ell _1\)-recovery from Gaussian measurements and total variation minimization. Eur. J. Appl. Math. 26(06), 917–929 (2015)

    Article  Google Scholar 

  7. Amelunxen, D., Lotz, M., McCoy, M., Tropp, J.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3(3), 224–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahsanullah, M., Kibria, B., Shakil, M.: Normal and Student’s \(t\) Distributions and Their Applications. Atlantis Studies in Probability and Statistics. Atlantis Press, Paris (2014)

    Book  MATH  Google Scholar 

  9. Cody, W.J.: Rational Chebyshev approximations for the error function. Math. Comput. 23(107), 631–637 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. 34(1), 30–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deniţiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase transitions and cosparse tomographic recovery of compound solid bodies from few projections. Fundam. Inform. 135(1–2), 73–102 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Petra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kiefer, L., Petra, S. (2017). Performance Bounds for Cosparse Multichannel Signal Recovery via Collaborative-TV. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics