Skip to main content

Time-Frequency Analysis of Cardiovascular Signals and Their Dynamic Interactions

  • Chapter
  • First Online:
Complexity and Nonlinearity in Cardiovascular Signals

Abstract

Cardiovascular signals are intrinsically non-stationary and interact through dynamic mechanisms to maintain blood pressure homeostasis in response to internal and external perturbations. The assessment of changes in cardiovascular signals and in their interactions provides valuable information regarding the cardiovascular function. Time-frequency analysis is a useful tool to study the time-varying nature of the cardiovascular system because it provides a joint representation of a signal in the temporal and spectral domain that allows to track the instantaneous frequency, amplitude and phase of non-stationary processes. The time-frequency distributions described in this chapter belong to the Cohen’s class, and can be derived from the Wigner-Ville distribution, which represents the fundamental basis of this unified framework. Time-frequency analysis can be extended to the study of the dynamic interactions between two or more non-stationary processes. Time-frequency coherence, phase-delay, phase-locking and partial-spectra are estimators that assess changes in the coupling and phase shift of signals generated by a complex system.

This chapter introduces the reader to multivariate time-frequency analysis and covers both theoretical and practical aspects. The application of these methodologies in the study of the dynamic interactions between the most important variables of the cardiovascular function is discussed. In the introduction, classical spectral analysis of cardiovascular signals is reviewed along with its physiological interpretation. The limitations of this framework provides a motivation for implementing non-stationary tools. In the first section, time-frequency representations based on the Wigner-Ville distribution are introduced and important aspects, such as the interference cross-terms and their elimination, the time and frequency resolution and the estimation of time-frequency spectra, are described. The second section describes algorithms to assess the dynamic interactions between non-stationary signals, including time-frequency coherence, phase delay and partial spectra, while the third section provides examples of multivariate time-frequency analysis of cardiovascular data recorded during a standard test to induce an autonomic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgnat, P., Flandrin, P., Honeine, P., Richard, C., Xiao, J.: Testing stationarity with surrogates: A time-frequency approach. IEEE Trans. Signal Process. 58(7), 3459–3470 (2010)

    Article  Google Scholar 

  2. Orini, M., Laguna, P., Mainardi, L.T., Bailón, R.: Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time-frequency analysis. Physiol. Meas. 33, 315–331 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Mainardi, L.T., Bianchi, A.M., Baselli, G., Cerutti, S.: Pole-tracking algorithms for the extraction of time-variant heart rate variability spectral parameters. IEEE Trans. Biomed. Eng. 42(3), 250–259 (1995). ID: 1

    Google Scholar 

  4. Mainardi, L.T., Bianchi, A.M., Furlan, R., Piazza, S., Barbieri, R., di Virgilio, V., Malliani, A., Cerutti, S.: Multivariate time-variant identification of cardiovascular variability signals: a beat-to-beat spectral parameter estimation in vasovagal syncope. IEEE Trans. Biomed. Eng. 44, 978–989 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Barbieri, R., Brown, E.: Analysis of heartbeat dynamics by point process adaptive filtering. IEEE Trans. Biomed. Eng. 53(1), 4–12 (2006)

    Article  PubMed  Google Scholar 

  6. Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967)

    Article  Google Scholar 

  7. Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70(9), 1055–1096 (1982)

    Article  Google Scholar 

  8. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C., Cohen, R.J.: Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981)

    Article  CAS  PubMed  Google Scholar 

  9. Saul, J.P., Arai, Y., Berger, R.D., Lilly, L.S., Colucci, W.S., Cohen, R.J.: Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am. J. Cardiol. 61(15), 1292–1299 (1988)

    Article  CAS  PubMed  Google Scholar 

  10. Task Force of the European Society of Cardiology the North American Society of Pacing: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  11. Montano, N., Ruscone, T.G., Porta, A., Lombardi, F., Pagani, M., Malliani, A.: Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90, 1826–1831 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492 (1991)

    Article  CAS  PubMed  Google Scholar 

  13. Piccirillo, G., Ogawa, M., Song, J., Chong, V., Joung, B., Han, S., Magra, D., Chen, L., Lin, S.-F., Chen, P.-S.: Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm. 6(4), 546–552 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Orini, M., Bailon, R., Mainardi, L.T., Laguna, P., Flandrin, P.: Characterization of dynamic interactions between cardiovascular signals by time-frequency coherence. IEEE Trans. Biomed. Eng. 59, 663–673 (2012)

    Article  PubMed  Google Scholar 

  15. Grossman, P., Taylor, E.W.: Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74, 263–285 (2007)

    Article  PubMed  Google Scholar 

  16. Eckberg, D.L.: Point: counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106, 1740–1742 (2009); discussion 1744

    PubMed  Google Scholar 

  17. Julien, C.: The enigma of Mayer waves: facts and models. Cardiovasc. Res. 70, 12–21 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Eckberg, D.L.: Sympathovagal balance: a critical appraisal. Circulation 96(9), 3224–3232 (1997)

    Article  CAS  PubMed  Google Scholar 

  19. Malliani, A., Pagani, M., Montano, N., Mela, G.S.: Sympathovagal balance: a reappraisal. Circulation 98(23), 2640–2643 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Malliani, A., Julien, C., Billman, G.E., Cerutti, S., Piepoli, M.F., Bernardi, L., Sleight, P., Cohen, M.A., Tan, C.O., Laude, D., Elstad, M., Toska, K., Evans, J.M., Eckberg, D.L.: Cardiovascular variability is/is not an index of autonomic control of circulation. J. Appl. Physiol. 101(2), 684–688 (2006)

    Article  PubMed  Google Scholar 

  21. Flandrin, P.: Time-Frequency/Time-Scale Analysis. Academic Press, New York (1999)

    Google Scholar 

  22. Cohen, L.: Time-Frequency Analysis, vol. 778. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  23. Hlawatsch, F., Auger, F., (eds.): Time-Frequency Analysis, Concepts and Methods. Wiley, London (2008)

    Google Scholar 

  24. Cohen, L.: Time-frequency distributions-a review. Proc. IEEE 77, 941–981 (1989)

    Article  Google Scholar 

  25. Hlawatsch, F., Boudreaux-Bartels, G.F.: Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag. 9, 21–67 (1992)

    Article  Google Scholar 

  26. Auger, F., Flandrin, P., Gonçalvès, P., Olivier, L.: Time-Frequency Toolbox. Technical Report http://www.nongnu.org/tftb/

  27. Flandrin, P.: Ambiguity Function. Time-Frequency Signal Analysis and Processing, pp. 160–167. Elsevier, Amsterdam (2003)

    Google Scholar 

  28. Auger, F., Chassande-Mottin, É.: Quadratic Time-Frequency Analysis I: Cohen’s Class, pp. 131–163. ISTE, London (2010)

    Google Scholar 

  29. Jeong, J., Williams, W.J.: Kernel design for reduced interference distributions. IEEE Trans. Signal Process. 40(2), 402–412 (1992)

    Article  Google Scholar 

  30. Baraniuk, R.G., Jones, D.L.: A signal-dependent time-frequency representation: optimal kernel design. IEEE Trans. Signal Process. 41, 1589–1602 (1993)

    Article  Google Scholar 

  31. Baraniuk, R.G., Jones, D.L.: A signal-dependent time-frequency representation: fast algorithm for optimal kernel design. IEEE Trans. Signal Process. 42(1), 134–146 (1994)

    Article  Google Scholar 

  32. Cunningham, G.S., Williams, W.J.: Kernel decomposition of time-frequency distributions. IEEE Trans. Signal Process. 42(6), 1425–1442 (1994)

    Article  Google Scholar 

  33. Costa, A., Boudreau-Bartels, G.: Design of time-frequency representations using a multiform, tiltable exponential kernel. IEEE Trans. Signal Process. 43, 2283–2301 (1995)

    Article  Google Scholar 

  34. Arce, G.R., Hasan, S.R.: Elimination of interference terms of the discrete wigner distribution using nonlinear filtering. IEEE Trans. Signal Process. 48(8), 2321–2331 (2000)

    Article  Google Scholar 

  35. Aviyente, S., Williams, W.J.: Multitaper marginal time-frequency distributions. Signal Process. 86(2), 279–295 (2006)

    Article  Google Scholar 

  36. Wahlberg, P., Hansson, M.: Kernels and multiple windows for estimation of the Wigner-Ville spectrum of gaussian locally stationary processes. IEEE Trans. Signal Process. 55(1), 73–84 (2007)

    Article  Google Scholar 

  37. Hlawatsch, F.: Interference terms in the Wigner distribution. In: Cappellini, V., Constantinides, A. (eds.) Digital Signal Processing, vol. 84, pp. 363–267. North-Holland, Amsterdam (1984)

    Google Scholar 

  38. Hlawatsch, F., Flandrin, P.: The interference structure of the Wigner distribution and related time-frequency signal representations. The Wigner Distribution - Theory and Applications in Signal Processing, pp. 59–113. Elsevier, Amsterdam (1997)

    Google Scholar 

  39. Flandrin, P.: Some features of time-frequency representations of multicomponent signals. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’84, vol. 9, pp. 266–269 (1984)

    Google Scholar 

  40. Orini, M., Bailón, R., Mainardi, L., Mincholé, A., Laguna, P.: Continuous quantification of spectral coherence using quadratic time-frequency distributions: error analysis and application. In: International Conference on Computers in Cardiology, pp. 681–684 (2009)

    Google Scholar 

  41. Martin, W., Flandrin, P.: Wigner-ville spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech Signal Process. 33(6), 1461–1470 (1985), ID: 1

    Google Scholar 

  42. Janssen, A., Claasen, T.: On positivity of time-frequency distributions. IEEE Trans. Acoust. Speech Signal Process. 33, 1029–1032 (1985)

    Article  Google Scholar 

  43. Matz, G., Hlawatsch, F.: Nonstationary spectral analysis based on time-frequency operator symbols and underspread approximations. IEEE Trans. Inf. Theory 52(3), 1067–1086 (2006). ID: 1

    Google Scholar 

  44. Mainardi, L.T.: On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods. Philos. Transact. A Math. Phys. Eng. Sci. 367(1887), 255–275 (2009)

    Article  Google Scholar 

  45. Pola, S., Macerata, A., Emdin, M., Marchesi, C.: Estimation of the power spectral density in nonstationary cardiovascular time series: assessing the role of the time-frequency representations (TFR). IEEE Trans. Biomed. Eng. 43, 46–59 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Orini, M., Bailon, R., Laguna, P., Mainardi, L., Barbieri, R.: A multivariate time-frequency method to characterize the influence of respiration over heart period and arterial pressure. EURASIP J. Adv. Signal Process. 2012(1), 214 (2012)

    Article  Google Scholar 

  47. Carter, G.C.: Coherence and time delay estimation. Proc. IEEE 75, 236–255 (1987)

    Article  Google Scholar 

  48. Di Rienzo, M., Parati, G., Radaelli, A., Castiglioni, P.: Baroreflex contribution to blood pressure and heart rate oscillations: time scales, time-variant characteristics and nonlinearities. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1301–1318 (2009)

    Article  Google Scholar 

  49. Orini, M., Mainardi, L.T., Gil, E., Laguna, P., Bailon, R.: Dynamic assessment of spontaneous baroreflex sensitivity by means of time-frequency analysis using either rr or pulse interval variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 1630–1633 (2010)

    Google Scholar 

  50. Keissar, K., Maestri, R., Pinna, G.D., Rovere, M.T.L., Gilad, O.: Non-invasive baroreflex sensitivity assessment using wavelet transfer function-based time-frequency analysis. Physiol. Meas. 31, 1021–1036 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. Gil, E., Orini, M., Bailon, R., Vergara, J.M., Mainardi, L., Laguna, P.: Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol. Meas. 31(9), 1271–1290 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. Matz, G., Hlawatsch, F.: Time-frequency coherence analysis of nonstationary random processes. In: Proceedings of the Tenth IEEE Workshop Statistical Signal and Array Processing, pp. 554–558 (2000)

    Google Scholar 

  53. White, L.B., Boashash, B.: Cross spectral analysis of nonstationary processes. IEEE Trans. Inf. Theory 36, 830–835 (1990)

    Article  Google Scholar 

  54. Faes, L., Pinna, G.D., Porta, A., Maestri, R., Nollo, G.: Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans. Biomed. Eng. 51, 1156–1166 (2004)

    Article  PubMed  Google Scholar 

  55. Schreiber, T., Schmitz, A.: Surrogate time series. Phys. D 142(3–4), 346–382 (2000)

    Article  Google Scholar 

  56. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. Lachaux, J., Rodriguez, E., Quyen, M.L.V., Lutzand, A., Martinerie, J., Varela, F.: Studying single-trials of phase-synchronous activity in the brain. Int. J. Bifurcation Chaos 10, 2429–2439 (2000)

    Google Scholar 

  58. Quyen, M.L.V., Foucher, J., Lachaux, J., Rodriguez, E., Lutz, A., Martinerie, J., Varela, F.J.: Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111, 83–98 (2001)

    Article  Google Scholar 

  59. Rudrauf, D., Douiri, A., Kovach, C., Lachaux, J.-P., Cosmelli, D., Chavez, M., Adam, C., Renault, B., Martinerie, J., Quyen, M.L.V.: Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals. Neuroimage 31, 209–227 (2006)

    Article  PubMed  Google Scholar 

  60. Aviyente, S., Bernat, E.M., Evans, W.S., Sponheim, S.R.: A phase synchrony measure for quantifying dynamic functional integration in the brain. Hum. Brain Mapp. 32(1), 80–93 (2011)

    Article  PubMed  Google Scholar 

  61. Aviyente, S., Evans, W.S., Bernat, E.M., Sponheim, S.: A time-varying phase coherence measure for quantifying functional integration in the brain. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2007, vol. 4, pp. IV–1169–IV–1172, 15–20 (2007)

    Google Scholar 

  62. Shin, Y., Gobert, D., Sung, S.-H., Powers, E.J., Park, J.B.: Application of cross time-frequency analysis to postural sway behavior: the effects of aging and visual systems. IEEE Trans. Biomed. Eng. 52, 859–868 (2005); Time-frequency phase cross time-frequency analysis

    Google Scholar 

  63. Lachaux, J.-P., Lutz, A., Rudrauf, D., Cosmelli, D., Quyen, M.L.V., Martinerie, J., Varela, F.: Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol. Clin. 32, 157–174 (2002)

    Article  PubMed  Google Scholar 

  64. Orini, M., Laguna, P., Mainardi, L., Bailón, R.: Characterization of the dynamic interactions between cardiovascular signals by cross time-frequency analysis: phase differences, time delay and phase locking. In: International Conference on Numerical Method in Engineering (2011)

    Google Scholar 

  65. Orini, M., Bailon, R., Mainardi, L.T., Laguna, P.: Time-frequency phase differences and phase locking to characterize dynamic interactions between cardiovascular signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 4689–4692 (2011)

    PubMed  Google Scholar 

  66. Bendat, J.S., Piersol, A.G.: Multiple-input/output relationships. In: Random Data, pp. 201–247. Wiley, New York (2012)

    Google Scholar 

  67. Orini, M., Taggart, P., Lambiase, P.D.: A multivariate time-frequency approach for tracking QT variability changes unrelated to heart rate variability. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 924–927. IEEE, Orlando. doi:10.1109/EMBC.2016.7590852

  68. Orini, M., Bailón, R., Enk, R., Koelsch, S., Mainardi, L., Laguna, P.: A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med. Biol. Eng. Comput. 48, 423–433 (2010)

    Article  PubMed  Google Scholar 

  69. Bailon, R., Garatachea, N., De La Iglesia, I., Casajus, J.A., Laguna, P.: Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing. IEEE Trans. Biomed. Eng. 60, 1796–1805 (2013). doi:10.1109/TBME.2013.2242328

    Article  PubMed  Google Scholar 

  70. Orini, M., Hanson, B., Taggart, P., Lambiase, P.: Detection of transient, regional cardiac repolarization alternans by time-frequency analysis of synthetic electrograms. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3773–3776 (2013)

    Google Scholar 

  71. Zhao, H., Lu, S., Zou, R., Ju, K., Chon, K.H.: Estimation of time-varying coherence function using time-varying transfer functions. Ann. Biomed. Eng. 33, 1582–1594 (2005)

    Article  PubMed  Google Scholar 

  72. Zhao, H., Cupples, W.A., Ju, K.H., Chon, K.H.: Time-varying causal coherence function and its application to renal blood pressure and blood flow data. IEEE Trans. Biomed. Eng. 54, 2142–2150 (2007)

    Article  CAS  PubMed  Google Scholar 

  73. Chen, Z., Purdon, P., Harrell, G., Pierce, E., Walsh, J., Brown, E., Barbieri, R.: Dynamic assessment of baroreflex control of heart rate during induction of propofol anesthesia using a point process method. Ann. Biomed. Eng. 39, 260–276 (2011). doi:10.1007/s10439-010-0179-z

    Article  PubMed  Google Scholar 

  74. Orini, M., Bailon, R., Laguna, P., Mainardi, L.T.: Modeling and estimation of time-varying heart rate variability during stress test by parametric and non parametric analysis. In: Proceedings of Computers in Cardiology, pp. 29–32, Sept. 30 2007–Oct. 3 2007

    Google Scholar 

  75. Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004)

    Article  Google Scholar 

  76. Gallet, C., Chapuis, B., Barrès, C., Julien, C.: Time-frequency analysis of the baroreflex control of renal sympathetic nerve activity in the rat. J. Neurosci. Methods 198(2), 336–343 (2011)

    Article  PubMed  Google Scholar 

  77. Keissar, K., Davrath, L.R., Akselrod, S.: Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1892), 1393–1406 (2009)

    Article  Google Scholar 

  78. Zhan, Y., Halliday, D., Jiang, P., Liu, X., Feng, J.: Detecting time-dependent coherence between non-stationary electrophysiological signals–a combined statistical and time-frequency approach. J. Neurosci. Methods 156, 322–332 (2006)

    Article  PubMed  Google Scholar 

  79. Bigot, J., Longcamp, M., Dal Maso, F., Amarantini, D.: A new statistical test based on the wavelet cross-spectrum to detect time-frequency dependence between non-stationary signals: application to the analysis of cortico-muscular interactions. Neuroimage 55, 1504–1518 (2011)

    Article  PubMed  Google Scholar 

  80. Brittain, J.S., Halliday, D.M., Conway, B.A., Nielsen, J.B.: Single-trial multiwavelet coherence in application to neurophysiological time series. IEEE Trans. Biomed. Eng. 54, 854–862 (2007)

    Article  PubMed  Google Scholar 

  81. Xiao, J., Flandrin, P.: Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement. IEEE Trans. Signal Process. 55, 2851–2860 (2007)

    Article  Google Scholar 

  82. Thomson, D.J.: Jackknifing multitaper spectrum estimates. IEEE Signal Process. Mag. 24, 20–30 (2007)

    Article  Google Scholar 

  83. Xu, Y., Haykin, S., Racine, R.J.: Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and hermite functions. IEEE Trans. Biomed. Eng. 46(7), 861–866 (1999)

    Article  CAS  PubMed  Google Scholar 

  84. Lovett, E.G., Ropella, K.M.: Time-frequency coherence analysis of atrial fibrillation termination during procainamide administration. Ann. Biomed. Eng. 25(6), 975–984 (1997) multitaper, spectrogram,coherence.

    Google Scholar 

  85. Faes, L., Nollo, G.: Multivariate frequency domain analysis of causal interactions in physiological time series. Biomedical Engineering, Trends in Electronics, Communications and Software. InTech, Rijeka (2011)

    Book  Google Scholar 

Download references

Acknowledgements

The Matlab code to conduct the analysis and create the figures shown in this chapter is are available at http://www.micheleorini.com/matlab-code/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Orini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Orini, M., Laguna, P., Mainardi, L.T., Bailón, R. (2017). Time-Frequency Analysis of Cardiovascular Signals and Their Dynamic Interactions. In: Barbieri, R., Scilingo, E., Valenza, G. (eds) Complexity and Nonlinearity in Cardiovascular Signals. Springer, Cham. https://doi.org/10.1007/978-3-319-58709-7_9

Download citation

Publish with us

Policies and ethics