Skip to main content

Advanced Pretreatment Strategies for Bioenergy Production from Biomass and Biowaste

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

Production of biowaste is increasing day by day, due to the abundant availability of raw materials and their utilities, especially from lignocellulosic-based material that constitutes 50% of the total biomass around the world. The recalcitrant structure of lignocellulose material has become resistant for their degradation and their recovery of valuable material. Many factors like lignin content, crystallinity of cellulose, and particle size limit the digestibility of hemicellulose and cellulose present in the lignocellulose material. To overcome the bottleneck, several pretreatment strategies have been employed to diminish the rate-limiting steps. They are generally classified as physical, chemical, and biological pretreatment. The physical pretreatments include mechanical (comminution, ultrasound, mechanical jet, high-pressure homogenizer), and thermal pretreatments (liquid hot water, autoclave, electrohydrolysis, microwave oven). The chemical pretreatments include acid, alkali, organosolv, wet oxidation, and ozonolysis pretreatment. The biological pretreatments (fungi, microbial consortia, enzyme pretreatment) or combined pretreatments (thermochemical or alkali thermochemical) are often employed nowadays. This chapter reviews the process description, mode of action, and challenges of several pretreatments. This chapter also discusses the future research needs of advanced pretreatment strategies for bioenergy production from biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78

    Article  Google Scholar 

  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 124(1):1133–1141

    Article  Google Scholar 

  • Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87(6):692–700

    Article  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. In: Finkelstein M, Davison BH (eds) Twenty-first symposium on biotechnology for fuels and chemicals: proceedings of the twenty-first symposium on biotechnology for fuels and chemicals held May 2–6, 1999, in Fort Collins, Colorado. Humana Press, Totowa, pp 5–37

    Chapter  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  Google Scholar 

  • Chum H, Black S, Johnson D, Sarkanen K, Robert D (1999) Organosolv pretreatment for enzymatic hydrolysis of poplars: isolation and quantitative structural studies of lignins. Clean Techn Environ Policy 1(3):187–198

    Article  Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522

    Article  Google Scholar 

  • Eisenlauer M, Teipel U (2017) Comminution of biogenic materials. Can J Chem Eng 95(7):1236–1244

    Article  Google Scholar 

  • Energy Information Administration (EIA) (2013) International energy outlook 2013. [WWW Document]. http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf

  • Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M (2007) Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res 41(11):2457–2466

    Article  Google Scholar 

  • Frigon J-C, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4(4):447–458

    Article  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  Google Scholar 

  • Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98(10):2034–2042

    Article  Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77(2):139–144

    Article  Google Scholar 

  • Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. In: Davison BH, Evans BR, Finkelstein M, Mcmillan JD (eds) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, pp 1119–1131

    Chapter  Google Scholar 

  • Kohlmann KL, Westgate PJ, Sarikaya A, Velayudhan A, Weil J, Hendrickson R, Ladisch MR (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. BTEC paper 127. In: 207th American Chemical Society National Meeting, ACS Symposium series No. 618. Enzymatic Degradation of Insoluble Carbohydrates, pp. 237–255

    Google Scholar 

  • Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34(3):391–399

    Article  Google Scholar 

  • Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3(3):199–208

    Article  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    Article  Google Scholar 

  • Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 42(21):5409–5416

    Article  Google Scholar 

  • Mahmoud A, Olivier J, Vaxelaire J, Hoadley AFA (2010) Electrical field: a historical review of its application and contributions in wastewater sludge dewatering. Water Res 44(8):2381–2407

    Article  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993

    Article  Google Scholar 

  • Muthangya M, Manoni Mshandete A, Kajumulo Kivaisi A (2009) Two-stage fungal pre-treatment for improved biogas production from sisal leaf decortication residues. Int J Mol Sci 10(11):4805

    Article  Google Scholar 

  • Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26(1):59–65

    Article  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. In: Davison BH, Lee JW, Finkelstein M, Mcmillan JD (eds) Biotechnology for fuels and chemicals: the twenty-fourth symposium. Humana Press, Totowa, pp 87–100

    Chapter  Google Scholar 

  • Rabelo SC, Carrere H, Maciel Filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102(17):7887–7895

    Article  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quím Nova 26:863–871

    Article  Google Scholar 

  • Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47(1):54–63

    Article  Google Scholar 

  • Roxburgh R, Soroushian F, Sieger R, Burrowes P (2005) Ultrasound for improved solids management – how, who, when and why. Water Environment Federation Proceedings of the Water Environment Federation, Residuals and Biosolids Management 13(13):956–968

    Google Scholar 

  • Saha M, Eskicioglu C, Marin J (2011) Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresour Technol 102(17):7815–7826

    Article  Google Scholar 

  • Sawatdeenarunat C, Surendra K, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  Google Scholar 

  • Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621

    Article  Google Scholar 

  • Tarkow H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Cellulases Appl Adv Chem 95:197–218. American Chemical Society

    Google Scholar 

  • Thring RW, Chornet E, Overend RP (1990) Recovery of a solvolytic lignin: effects of spent liquor/acid volume ratio, acid concentration and temperature. Biomass 23(4):289–305

    Article  Google Scholar 

  • Varghese KS, Pandey MC, Radhakrishna K, Bawa AS (2014) Technology, applications and modelling of ohmic heating: a review. J Food Sci Technol 51(10):2304–2317

    Article  Google Scholar 

  • Veluchamy C, Kalalamdhad AS (2017) Prerequisite – a hot air oven pretreatment for anaerobic digestion of lignocellulose waste material. In: CSBE/SCGAB 2017 annual conference Canad Inns Polo Park. The Canadian Society for Bioengineering, Winnipeg, pp 1–10

    Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017a) Biochemical methane potential test for pulp and paper mill sludge with different food/microorganisms ratios and its kinetics. Int Biodeterior Biodegrad 117:197–204

    Article  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017b) Enhanced methane production and its kinetics model of thermally pretreated lignocellulose waste material. Bioresour Technol 241:1–9

    Article  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017c) Enhancement of hydrolysis of lignocellulose waste pulp and paper mill sludge through different heating processes on thermal pretreatment. J Clean Prod 168:219–226

    Article  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017d) Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: a review. Bioresour Technol 245:1206–1219

    Article  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017e) A mass diffusion model on the effect of moisture content for solid-state anaerobic digestion. J Clean Prod 162:371–379

    Article  Google Scholar 

  • Veluchamy C, Raju VW, Kalamdhad AS (2017) Prerequisite–an electrohydrolysis pretreatment for anaerobic digestion of lignocellulose waste material. Bioresour Technol 235:274–280

    Article  Google Scholar 

  • Vidal PF, Molinier J (1988) Ozonolysis of lignin – improvement of in vitro digestibility of poplar sawdust. Biomass 16(1):1–17

    Article  Google Scholar 

  • Viola E, Zimbardi F, Cardinale M, Cardinale G, Braccio G, Gambacorta E (2008) Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresour Technol 99(4):681–689

    Article  Google Scholar 

  • Weil JR, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR (1997) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  Google Scholar 

  • Weil JR, Sarikaya A, Rau S-L, Goetz J, Ladisch CM, Brewer M, Hendrickson R, Ladisch MR (1998) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73(1):1–17

    Article  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1):26–40

    Article  Google Scholar 

  • Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S (2010a) Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl Biochem Biotechnol 160(2):539–551

    Article  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010b) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 101(13):4895–4899

    Article  Google Scholar 

  • Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102(19):8899–8906

    Article  Google Scholar 

  • Zhen G, Lu X, Li Y-Y, Zhao Y (2014) Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion. Appl Energy 128(Suppl C):93–102

    Article  Google Scholar 

  • Zheng Y, Lin HM, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14(6):890–896

    Article  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhong W, Zhang Z, Luo Y, Sun S, Qiao W, Xiao M (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102(24):11177–11182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Veluchamy, C., Kalamdhad, A.S., Gilroyed, B.H. (2018). Advanced Pretreatment Strategies for Bioenergy Production from Biomass and Biowaste. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics