Skip to main content

Nanowaste Classification, Management, and Legislative Framework

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

In this chapter, threefold objectives are pursued, namely, to (i) raise concerns related to the alarming increases of uncontrolled releases of NMs into the environment through nanowastes, (ii) examine the unique challenges nanowastes pose to the waste management systems (both from technological and legislative perspectives), and (iii) summarize results of the first nanowaste classification formalism in order to elucidate the potential challenges of waste streams containing nanoscale dimension materials to the present waste management paradigm. Furthermore, this chapter aims at providing an improved basis for decision-making in relation to the waste management of nanoproducts and waste containing engineered nanomaterials (ENMs). In the coming sections of the chapter it is also mentioned the importance of adopting preventive and protective measures proportionate to the risk intensity and the desired level of protection, and it is presented a “user-friendly” procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort.

Finally, the chapter closes by summarizing several proactive steps of enhancing effective long-term and responsible management of nanowastes. The rapidly growing nanotechnology field currently lacks policies and frameworks related to the monitoring of products containing nanomaterials throughout their life cycle. Clear and efficient strategies and procedures are required for disposal and, where possible, recycling of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AFSSET (2008) Avis de l’Agence française de sécurité sanitaire de l’environnement et du travail relatif aux nanomatériaux et à la sécurité au travail

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2010) http://www.atsdr.cdc.gov/HAC/phamanual/toc.html. Accessed 15 Aug 2017

  • Andorno R (2004) The precautionary principle: a new legal standard for a technological age. J Int Biotechnol Law 1:11–19

    Article  Google Scholar 

  • Approaches to Safe Nanotechnology (2006) An information exchange with NIOSH. Department of Health and Human Services, Centers for Disease Control and Prevention NIOSH

    Google Scholar 

  • Arvidsson R, Molander S, Sande’n B (2012) Particle flow analysis from sunscreen, paint, and cement. J Ind Ecol 16:343–351

    Article  Google Scholar 

  • Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M, Kuhlbusch TAJ (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11:1593–1609

    Article  Google Scholar 

  • Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: end-of-life assessment. J Nanopart Res 14(3):720. https://doi.org/10.1007/s11051-012-0720-0

    Article  Google Scholar 

  • Balas F, Arruebo M, Urrutia J, Santamaria J (2010) Reported nanosafety practices in reaserch laboratories worldwide. Nat Nanotechnol 5:93–96

    Article  Google Scholar 

  • Baun A, Hartmann NIB, Grieger KD, Hansen SF (2009) Setting the limits for engineered nanoparticles in European surface waters–are current approaches appropriate. J Environ Monit 11:1774–1781

    Article  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available socks fabrics. Environ Sci Technol 42:4133–4139

    Article  Google Scholar 

  • Best Practices Guide to Synthetic Nanoparticle Risk Management (2009) Institut de recherche Robert-Sauvé en santé et en sécurité de travail (IRSST), Canada

    Google Scholar 

  • Boldrin A, Hansen SF, Baun A, Bloch Hartmann NI, Astrup TF (2014) Environmental exposure assessment framework for nanoparticles in solid waste. J Nanopart Res 16(2394)

    Google Scholar 

  • Bolyard S, Reinhart D, Santra S (2013) Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol. https://doi.org/10.1021/es305175e

  • Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association Circulation 109:2655–267

    Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  Google Scholar 

  • Council Directive 1991/689. Council Directive 91/689/EEC of 12 December 1991 on hazardous waste. Official Journal of the European Communities, L 377

    Google Scholar 

  • Dang Y, Zhang Y, Fan L, Chen H, Roco MC (2010) Trends in worldwide nanotechnology patent applications: 1991–2008. J Nanopart Res 12:687–706

    Article  Google Scholar 

  • Deep A, Kumar K, Kumar P, Kumar P, Sharma AL, Gupta B, Bharadwaj LM (2011) Recovery of pure ZnO nanoparticles from spent Zn–MnO2 alkaline batteries. Environ Sci Technol 45:10551–10556

    Article  Google Scholar 

  • Drezek RA, Tour JM (2010) Is nanotechnology too broad to practise. Nat Nanotechnol 5:168–169

    Article  Google Scholar 

  • Franco A, Hansen SF, Olsen SO, Butti L (2007) Limits and prospects of the “incremental approach” and the European legislation on the management of risks related to nanomaterials. Regul Toxicol Pharmacol 48:171–183

    Article  Google Scholar 

  • Gaffet E (2009) Aspects sécurité des nanomatériaux et nanoparticules manufactures Editions Techniques de l’ingénieur

    Google Scholar 

  • Garcia-Garcia E, Gil S, Andrieux K, Desmaële D, Nicolas V, Georgin D, P Andreux J, Roux F, Couvreur P (2005) A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci 62:1400–1408

    Google Scholar 

  • GHS (2003) GHS (Globally Harmonized System) of Classification and Labelling of Chemicals. United Nations, New York/Geneva

    Google Scholar 

  • Groso A, Petri-Fink A, Magrez A, Riediker M, Meyer T (2010) Management of nanomaterials safety in research environment. Part Fib Toxicol 7:40

    Article  Google Scholar 

  • Hansen SF, Baun A (2012) European regulation affecting nanomaterials—review of limitations and future recommendations. Dose Response 10:364–383

    Article  Google Scholar 

  • Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of NMs. Nanotox 1:243–250

    Article  Google Scholar 

  • Hansen SF, Michelson ES, Kamper A, Borling P, Steur-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of NMs in consumer products. Ecotoxicology 17:438–447

    Article  Google Scholar 

  • Health Council of the Netherlands (2011) Nanomaterials in waste. The Hague. http://www.gezondheidsraad.nl/sites/default/files/Nano_waste_201114E.pdf. Accessed on July 2013

  • Hirose A, Nishimura T, Fukumor N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  Google Scholar 

  • Kavouras P, Komninou P, Chrissafis K, Kaimakamis G, Kokkou S, Paraskevopoulos K et al (2003) Microstructural changes of processed vitrified solid waste products. J Europ Ceramic Soc 23:1305–1311

    Article  Google Scholar 

  • Keller A, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1692. https://doi.org/10.1007/s11051-013-1692-4

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  • Les Nanomatériaux: Definitions, risques toxicologiques, caractérisation, de l’éxposition professionelle, et mesures de prévention Institut National de Recherche et de Sécurité 2008

    Google Scholar 

  • Ling MP, Lin WC, Liu CC, Huang YS, Chueh MJ, Shih T-S (2012) Risk management strategy to increase the safety of workers in the nanomaterials industry. J Hazard Mater 229–230:83–93. https://doi.org/10.1016/j.jhazmat.2012.05.073

    Article  Google Scholar 

  • Liu J, Pui DYH, Wang J (2011) Removal of airborne nanoparticles by membrane coated filters. Sci Total Environ 409:4868–4874

    Article  Google Scholar 

  • Lore MB, Sambol AR, Japuntich D, Franklin LM, Hinrichs SH (2010) Inter-laboratory performance between two nanoparticle air filtration systems using scanning mobility particle analyzers. J Nanopart Res 13(4):1581–1591

    Article  Google Scholar 

  • Lozano P, Berge ND (2012) Single-walled carbon nanotube behavior in representative mature leachate. Waste Manag 32(9):1699–1711

    Article  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  Google Scholar 

  • Magrez A, Horvath L, Smajda R, Salicio V, Pasquier N, Forró L, Schwaller B (2009) Cellular toxicity of TiO2-based Nanofilaments. ACS Nano 3:2274–2280

    Article  Google Scholar 

  • Markus AA, Parsons JR, Roex EWM, Kenter GCM, Laane RWPM (2013) Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse. Sci Total Environ 456–457:154–160. https://doi.org/10.1016/j.scitotenv.2013.03.058

    Article  Google Scholar 

  • Mc Neil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    Article  Google Scholar 

  • Meili C, Widmer M, Husmann F, Gehr P, Blank F, Riediker M, Schmid K, Stark W, Limbach L (2007) Grundlagenbericht zum Aktionsplan «Risikobeurteilung und Risikomanagement synthetischer Nanomaterialien». Umwelt-Wissen Nr. Bundesamt für Umwelt und Bundesamt für Gesundheit

    Google Scholar 

  • Murashov V, Engel S, Savolainen K, Fullam B, Lee M, Kearns P (2009) Occupational safety and health in nanotechnology and Organisation for Economic Cooperation and Development. J Nanopart Res 11:1587–1591

    Article  Google Scholar 

  • Musee N (2011) Nanowastes and the environment: Potential new waste management paradigm. Environ Intern 37:112–128

    Article  Google Scholar 

  • Musee N, Aldrich C, Lorenzen L (2008) New methodology for hazardous waste classification using fuzzy set theory: Part II. Intelligent decision support system. J Hazard Mater 157:94–104

    Article  Google Scholar 

  • Nanotechnologies – Part 2 (2007) Guide to safe handling and disposal of manufactured nanomaterials. British Standards Institution

    Google Scholar 

  • Nguyen T, Pellegrin B, Bernard C, Gu X, Gorham JM, Stutzman P et al (2011) Fate of nanoparticles during life cycle of polymer nanocomposites. J Phys 304:012–060

    Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea J, Metcalfe C, Rose J, Horne N, Koelmans A, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59

    Article  Google Scholar 

  • PEN (2009) Consumer product inventory. Project of Emerging Nanotechnologies Woodrow Wilson International Center of Scholars, Washington, DC. http://www.nanotechproject.org/inventories/consumer/browse/

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  Google Scholar 

  • Precautionary Matrix for Synthetic Nanomaterials Federal Office of Public Health Switzerland (2008) http://www.bafu.admin.ch/nanotechnologie

  • Reinhart DR, Berge ND, Santra S, Bolyard SC (2010) Emerging contaminants: nanomaterial fate in landfills. Waste Manag 30:2020–2021

    Article  Google Scholar 

  • Roes L, Patel MK, Worrell E, Ludwig C (2012) Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. Sci Total Environ 417–418:76–86

    Article  Google Scholar 

  • Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4(1):9

    Article  Google Scholar 

  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL (2005) Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595

    Article  Google Scholar 

  • Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22:12008–12015

    Article  Google Scholar 

  • Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260

    Article  Google Scholar 

  • Silk JC (2003) Development of a globally harmonized system for hazard communication. Int J Hyg Environ Health 206:447–452

    Article  Google Scholar 

  • Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567

    Article  Google Scholar 

  • SRU (2011) Precautionary strategies for managing nanomaterials. SRU, German Advisory Council on the Environment

    Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  Google Scholar 

  • The Nanodatabase (2013) An inventory of products that contain nanomaterials or are marketed with the word ‘nano’. \http://nano.db.dk/. Accessed 9 July 2013

  • Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez M (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47

    Article  Google Scholar 

  • Valeurs Limites d’exposition aux postes de travail SUVA, Switzerland; 2009

    Google Scholar 

  • Von der Kammer F, Ferguson PL, Holden P, Masion A, Rogers KR, Klaine SJ, Koelmans A et al (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31(1):32–49. https://doi.org/10.1002/etc.723

    Article  Google Scholar 

  • Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45(10):4570–4578

    Article  Google Scholar 

  • Yacobi NR, DeMaio L, Xie JS, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED (2008) Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine: NBM 4:139–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigers Bakiu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bakiu, R. (2018). Nanowaste Classification, Management, and Legislative Framework. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_151-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_151-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics