Skip to main content

Reliable Transmission Protocol for Underwater Acoustic Networks

  • Chapter
  • First Online:
Computer and Network Security Essentials

Abstract

Underwater Acoustic Networks (UANs) use acoustic communication and are characterized by limited bandwidth capacity, high energy consumption, long propagation delay, which cause the traditional protocols designed for radio channels to be either inapplicable or to be inefficient for UANs. The chapter introduces a three-layer protocol architecture for UANs which is Micro-ANP (including Application, Network-transport, and Physical layer). Further, based on the Micro-ANP architecture and Recursive LT (RLT) code, a handshake-free reliable transmission mechanism is presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, Z., Peng, Z., Cui, J. H., & Jiang, Z. (2010). Handling triple hidden terminal problems for multi-channel MAC in long-delay underwater sensor networks. In Proceedings of international conference on computer communications (INFOCOM) (pp. 1–21). San Diego, USA: IEEE Computer Society.

    Google Scholar 

  2. Pompili, D., & Akyildiz, I. F. (2010). A multimedia cross-layer protocol for underwater acoustic sensor networks. IEEE Transaction on Wireless Communications, 9(9), 2924–2933.

    Article  Google Scholar 

  3. Pompili, D., Melodia, T., & Akyildiz, I. F. (2010). Distributed routing algorithms for underwater acoustic sensor networks. IEEE Transaction on Wireless Communications, 9(9), 2934–2944.

    Article  Google Scholar 

  4. Huang, C. J., Wang, Y. W., & Liao, H. H. (2011). A power-efficient routing protocol for underwater wireless sensor networks. Applied Soft Computing, 11(2), 2348–2355.

    Article  Google Scholar 

  5. Zhou, Z., & Cui, J. H. (2008). Energy efficient multi-path communication for time-critical applications in underwater sensor networks. In Proceedings of the 9th ACM international symposium on mobile ad hoc networking and computing, Hong Kong, China (pp. 1–31). New York, USA: ACM.

    Google Scholar 

  6. Hao, K., Jin, Z., Shen, H., & Wang, Y. (2015). An efficient and reliable geographic routing protocol based on partial network coding for underwater sensor networks. Sensors, 15, 12720–12735.

    Article  Google Scholar 

  7. Du, X., Huang, K., & Lan, S. (2014). LB-AGR: Level-based adaptive geo-routing for underwater sensor networks. The Journal of China Universities of Posts and Telecommunications, 21(1), 54–59.

    Article  Google Scholar 

  8. Du, X., Peng, C., Liu, X., & Liu, Y. (2015). Hierarchical code assignment algorithm and state-based CDMA protocol for UWSN. China Communications, 12(3), 50–61.

    Article  Google Scholar 

  9. Du, X., Li, K., Liu, X.Su, Y. (2016 RLT code based handshake-free reliable MAC protocol for under-water sensor networks. Journal of Sensors. doi:10.1155/2016/3184642

  10. Du, X., Liu, X., & Su, Y. (2016). Underwater acoustic networks testbed for ecological monitoring of Qinghai Lake. In Proceedings of oceans16 Shanghai (pp. 1–10).

    Google Scholar 

  11. Dong, Y., & Liu, P. (2010). Security consideration of underwater acoustic networks. In Proceedings of International Congress on Acoustics, ICA.

    Google Scholar 

  12. Cong, Y., Yang, G., Wei, Z., & Zhou, W. (2010). Security in underwater sensor network. In Proceedings of international conference on communication and mobile computing (pp. 162–168).

    Google Scholar 

  13. Dini, G., & Lo Duca, A. (2011). A cryptographic suite for underwater cooperative applications. In Proceedings of IEEE symposium on computers & communications (pp. 870–875).

    Google Scholar 

  14. Peng C., Du X., Li K., & Li M.. (2016 An ultra lightweight encryption scheme in underwater acoustic networks. Journal of Sensors. doi:10.1155/2016/8763528

  15. Du, X.2014 Micro-ANP protocol architecture for UWSN. China Patent ZL201210053141.0.

    Google Scholar 

  16. Molins, M., & Stojanovic, M. (2006). Slotted FAMA: A MAC protocol for underwater acoustic networks. In Proceedings of IEEE OCEANS’06 (pp. 16–22), Singapore.

    Google Scholar 

  17. Reed, I., & Solomon, G. (1960). Polynomial Codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 8(2), 300–304.

    Article  MathSciNet  MATH  Google Scholar 

  18. Luby, M., Mitzenmacher, M., Shokrollahi, A., & Spielman, D. (1997). Practical loss-resilient codes. In ACM STOC (pp. 150–159).

    Google Scholar 

  19. Xie, P., Zhou, Z., Peng, Z., Cui, J., & Shi, Z. (2010). SDRT: A reliable data transport protocol for underwater sensor networks. Ad Hoc Networks, 8(7), 708–722.

    Article  Google Scholar 

  20. Mo, H., Peng, Z., Zhou, Z., Zuba, M., Jiang, Z., & Cui, J. (2013). Coding based multi-hop coordinated reliable data transfer for underwater acoustic networks: Design, implementation and tests. In Proceedings of Globecom 2013, wireless network symposium (pp. 5066–5071).

    Google Scholar 

  21. MacKay, D. J. C. (2005). Fountain codes. In Proceedings of IEEE communications (pp. 1062–1068).

    Google Scholar 

  22. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.

    MathSciNet  MATH  Google Scholar 

  23. Luby, M. (2002). LT codes. In Proceedings of the 43rd annual IEEE symposium on foundations of computer science (pp. 271–280).

    Google Scholar 

  24. Xie, P., Cui, J.-H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In Proceedings of IFIP networking.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation Projects of China (61162003), Key laboratory of IoT of Qinghai Province (2017-Z-Y21), Qinghai Office of Science and Technology (2015-ZJ-904), Hebei Engineering Technology Research Center for IOT Data acquisition & Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Du, X., Li, M., Li, K. (2018). Reliable Transmission Protocol for Underwater Acoustic Networks. In: Daimi, K. (eds) Computer and Network Security Essentials. Springer, Cham. https://doi.org/10.1007/978-3-319-58424-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58424-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58423-2

  • Online ISBN: 978-3-319-58424-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics