Skip to main content

Radio Propagation Modeling and Simulation Using Ray Tracing

  • Chapter
  • First Online:
The World of Applied Electromagnetics

Abstract

Techniques of radio propagation modeling and simulation are briefly reviewed, and the advantages of ray tracing methods are discussed. Spatial division methods are employed to accelerate the ray tracing algorithms and achieve computational efficiency and accuracy for propagation modeling. Algorithms extracting 3D models from geospatial resources are developed to establish realistic models for propagation environments. Terrain features such as ridges in mountainous regions are important elements characterizing the propagation of electromagnetic waves. Simple methods are introduced to extract these features. Different levels of detail of propagation environment are examined to gain insight of their effect on the efficiency and accuracy of propagation simulation. Computer hardware acceleration using graphics processing units (GPUs) is applied to the propagation simulation over terrains and a significant speedup is achieved. For source localization applications using ray tracing simulations, two methods (time reversal and machine learning) are discussed and their performances are investigated. A perspective of propagation modeling in the near future is given, and it points out that ray tracing methods will play a more significant role in providing accurate simulation results in real time for dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.T. Friis, A note on a simple transmission formula. Proc. IRE Waves Electron. 34, 254–256 (1946)

    Article  Google Scholar 

  2. H.L. Bertoni, Radio Propagation for Modern Wireless Systems (Prentice-Hall, Upper Saddle River, NJ, 2000)

    Google Scholar 

  3. P.L. Rice, A.G. Longley, K.A. Norton, A.P. Barsis, Transmission loss predictions for tropospheric communication circuits. Natl. Bur. Stand. Tech. Note 101. I & II (1965)

    Google Scholar 

  4. A.G. Longley, P.L. Rice, Prediction of tropospheric radio transmission loss over irregular terrain. ESSA Technical Report ERL 79-ITS 67, U.S. Government Printing Office, July 1968.

    Google Scholar 

  5. G.A. Hufford, A.G. Longley, W.A. Kissick, A guide to the use of the ITS Irregular Terrain Model in the area prediction mode. U.S. Department of Commerce, DC, USA, April (1982). [Online]. Available: http://www.ntia.doc.gov/files/ntia/publications/ntia_82-100_20121129145031_555510.pdf.

  6. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th edn. (Pergamon Press, New York, 1980)

    MATH  Google Scholar 

  7. G.D. Durgin, The practical behavior of various edge-diffraction formulas. IEEE Antennas Propag. Mag. 51(3), 24–35 (2009)

    Article  Google Scholar 

  8. K. Bullington, Radio propagation at frequencies above 30 megacycles. Proc. IRE 35(10), 1122–1136 (1947)

    Article  Google Scholar 

  9. Propagation by diffraction, Recommendation ITU-R P.526-12, (Downloadable from ITU website, www.itu.int), 2012

  10. J. Epstein, D.W. Peterson, An experimental study of wave propagation at 850 Mc. Proc. IRE 41(5), 595–611 (1953)

    Article  Google Scholar 

  11. J. Deygout, Multiple knife-edge diffraction of microwaves. IEEE Trans. Antennas Propag. 14(4), 480–489 (1966)

    Article  Google Scholar 

  12. C.L. Giovaneli, An analysis of simplified solutions for multiple knife-edge diffraction. IEEE Trans. Antennas Propag. 32(3), 297–310 (1984)

    Article  Google Scholar 

  13. G.D. Dockery, Modeling electromagnetic wave propagation in the troposphere using the parabolic equation. IEEE Trans. Antennas Propag. 36(10), 1464–1470 (1988)

    Article  Google Scholar 

  14. A.E. Barrios, Parabolic equation modeling in horizontally inhomogeneous environments. IEEE Trans. Antennas Propag. 40(7), 791–797 (1992)

    Article  Google Scholar 

  15. A.E. Barrios, A terrain parabolic equation model for propagation in the troposphere. IEEE Trans. Antennas Propag. 42(1), 90–98 (1994)

    Article  Google Scholar 

  16. J.R. Kuttler, Differences between the narrow-angle and wide-angle propagators in the split-step Fourier solution of the parabolic wave equation. IEEE Trans. Antennas Propag. 47(7), 1131–1140 (1999)

    Article  Google Scholar 

  17. K.B. Thiem, A 3D parabolic equation based technique for predicting propagation path loss in an Urban Area, Master thesis, Naval Postgraduate School, Monterey, Sept 2001

    Google Scholar 

  18. J. Walfisch, H.L. Bertoni, A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag. 36(12), 1788–1796 (1988)

    Article  Google Scholar 

  19. M. Hata, Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 29, 317–325 (1980)

    Article  Google Scholar 

  20. Y. Okumura, E. Ohmori, T. Kawano, K. Fukuda, Field strength and its variability in VHF and UHF land-mobile service. Rev. Electr. Commun. Lab. 16(9–10), 825–873 (1968)

    Google Scholar 

  21. T. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice-Hall, Upper Saddle River, NJ, 2002)

    MATH  Google Scholar 

  22. COST Action 231 Final Report, Digital Mobile Radio Towards Future Generation Systems, ed. By E. Damosso, L.M. Correia. (Luxembourg, 1999). [Online]. Available: http://www.lx.it.pt/cost231/final_report.htm

  23. J.B. Keller, Geometrical theory of diffraction. J. Opt. Soc. Am. 52(2), 116–130 (1962)

    Article  MathSciNet  Google Scholar 

  24. R.G. Kouyoumjian, P.H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62(11), 1448–1461 (1974)

    Article  Google Scholar 

  25. C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989)

    Google Scholar 

  26. Y. Rahmat-Samii, R. Mittra, A spectral domain interpretation of high frequency diffraction phenomena. IEEE Trans. Antennas Propag. 25(5), 676–687 (1977)

    Article  Google Scholar 

  27. M.F. Iskander, Z. Yun, Propagation prediction models for wireless communication systems. IEEE Trans. Microwave Theory Tech. 50(3), 662–673 (2002)

    Article  Google Scholar 

  28. Z. Yun, M.F. Iskander, Ray tracing for radio propagation modeling: Principles and applications. IEEE Access 3, 1089–1100 (2015)

    Article  Google Scholar 

  29. Z. Zhang, Z. Yun, M.F. Iskander, Ray tracing method for propagation models in wireless communications. Electron. Lett. 36(5), 464–465 (2000)

    Article  Google Scholar 

  30. Z. Yun, M.F. Iskander, Z. Zhang, A fast ray tracing procedure using space division with uniform rectangular grid. Electron. Lett. 36(10), 895–897 (2000)

    Article  Google Scholar 

  31. Z. Yun, Z. Zhang, M.F. Iskander, A ray-tracing method based on triangular grid approach and application to propagation prediction in urban environments. IEEE Trans. Antennas Propag. 50(5), 750–758 (2002)

    Article  Google Scholar 

  32. Z. Zhang, Z. Yun, M.F. Iskander, 3D tetrahedron ray tracing algorithm. Electron. Lett. 37(6), 334–335 (2001)

    Article  Google Scholar 

  33. J.G. Cleary, G. Wyvill, Analysis of an algorithm for fast ray tracing using uniform space subdivision. Vis. Comput. 4(2), 65–83 (1988)

    Article  Google Scholar 

  34. Digital topographic databases for propagation studies, Rec. ITU-R P. 1058-2. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1058-2-199910-I!!MSW-E.doc.

  35. F.A. Qazi, A. Das, Z. Yun, M.F. Iskander, Optimizing cellular coverage in Maui Island, Hawaii, in 2016 IEEE/ICES International Conference on Wireless Information and Systems (ICWITS) and Applied Computational Electromagnetics (ACES). (Available in IEEE Xplore Digital Library)

    Google Scholar 

  36. Z. Yun, M.F. Iskander, S.Y. Lim, D. He, R. Martinez, Radio wave propagation prediction based on 3D building structures extracted from 2D images. IEEE Antennas Wirel. Propag. Lett. 6, 557–559 (2007)

    Article  Google Scholar 

  37. Z. Yun, S.Y. Lim, M.F. Iskander, Use of geospatial resources for radio propagation prediction in urban areas. IEEE Antennas Wirel. Propag. Lett. 8, 587–591 (2009)

    Article  Google Scholar 

  38. R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  39. F. Klen, Geometry (Dover Publications, Inc., New York, 1939)

    Google Scholar 

  40. Z. Yun, N. Omaki, M.F. Iskander, Ridge feature extraction and effect on radio propagation for wireless communications, in IEEE APS Conference and USNC/URSI Meeting, Chicago, 8–14 July 2012

    Google Scholar 

  41. Z. Yun, M.F. Iskander, Diffraction from multiple ridges: Comparing three- and two-dimensional results, in The 8th EuCAP, The Hague, Netherlands, April 2014. (Available in IEEE Xplore Digital Library)

    Google Scholar 

  42. R. Luebbers, A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Trans. Antennas Propag. 37(2), 206–211 (1989)

    Article  Google Scholar 

  43. Z. Yun, M.F. Iskander, Multiple levels of detail environment modeling for radio propagation simulation and prediction, in Radio Science Meeting (Joint with AP-S Symposium), 2015. (Available in IEEE Xplore Digital Library)

    Google Scholar 

  44. A.T. Derode, M. Fink, Random multiple scattering of ultrasound. I. Coherent and ballistic waves. Phys. Rev. E 64(3), 036605 (2001)

    Article  Google Scholar 

  45. G. Montaldo, G. Lerosey, A. Derode, A. Tourin, J. de Rosny, M. Fink, Telecommunication in a disordered environment with iterative time reversal. Waves Random Med. 15, 287–302 (2004)

    Article  Google Scholar 

  46. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, M. Fink, Time reversal of electromagnetic waves. Phys. Rev. Lett. 92(19), 193904 (2004)

    Article  Google Scholar 

  47. Z. Yun, M.F. Iskander, Time reversal with single antenna systems in indoor multipath environments, in Ultra-Wideband, Short-Pulse Electromagnetics 8, C.E. Baum, A.P. Stone, J.S. Tyo (Eds.) (Springer, New York, 2007)

    Google Scholar 

  48. D.A. Bibb, Z. Yun, M.F. Iskander, Source localization using time reversal in urban environments: A ray tracing approach, in 2014 IEEE International Symposium on Antennas and Propagation and the 2014 USNC/URSI National Radio Science Meeting, Memphis, TN, 2014. (Available in IEEE Xplore Digital Library)

    Google Scholar 

  49. D.A. Bibb, Z. Yun, M.F. Iskander, Time reversal for source localization in urban environments considering the effect of Doppler shift, in 2015 IEEE International Symposium on Antennas and Propagation and the 2015 USNC/URSI National Radio Science Meeting, Vancouver, Canada, 2015. (Available in IEEE Xplore Digital Library)

    Google Scholar 

  50. D.A. Bibb, Z. Yun, M.F. Iskander, Source localization using time reversal in urban environments using ray tracing. IEEE Antennas Wirel. Propag. Lett., Under review

    Google Scholar 

  51. D.A. Bibb, Z. Yun, M.F. Iskander, Machine learning for source localization in urban environments, in IEEE Military Communications Conference, MILCOM 2016-2016, Baltimore, 1–3 November

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqing Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Yun, Z., Iskander, M.F. (2018). Radio Propagation Modeling and Simulation Using Ray Tracing. In: Lakhtakia, A., Furse, C. (eds) The World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-319-58403-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58403-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58402-7

  • Online ISBN: 978-3-319-58403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics