Skip to main content

Animal Models of Stress and Tinnitus

  • Chapter
  • First Online:
Tinnitus and Stress

Abstract

Here I briefly review the major stress system of the body, an intrinsic stress system in the cochlea, how stress can be recognized in laboratory animals, and how stress can be induced in animals. Then I discuss the effects of stress on the cochlea and the auditory central nervous system. This leads to the examination of animal models of stress that is causal to or exacerbates tinnitus and briefly also how tinnitus may cause stress. I end with a discussion of behavioral tests that are used to decide whether animals have tinnitus. I also suggest that these various test procedures may cause or exaggerate signs of tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bali A, Jaggi AS (2015) Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 746:282–292

    Article  CAS  PubMed  Google Scholar 

  • Basappa J, Graham CE, Turcan S, Vetter DE (2012) The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic-pituitary-adrenal axis-equivalent signaling system. Hear Res 288:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CA, Brozoski TJ (2001) Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol 2(1):54–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brain facts (2015) A primer on the brain and nervous system. Soc Neurosci. https://www.sfn.org/public-outreach/brainfacts-dot-org

  • Canlon B, Meltser I, Johansson P, Tahera Y (2007) Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 226:61–69

    Article  CAS  PubMed  Google Scholar 

  • Canlon B, Theorell T, Hasson D (2013) Associations between stress and hearing problems in humans. Hear Res 295:9–15

    Article  PubMed  Google Scholar 

  • Carstens E, Moberg GP (2000) Recognizing pain and distress in laboratory animals. ILAR J 41(2):62–71

    Article  CAS  PubMed  Google Scholar 

  • Curtis LM, Rarey KE (1995) Effect of stress on cochlear glucocorticoid protein. II. Restraint. Hear Res 92(1–2):120–125

    Article  CAS  PubMed  Google Scholar 

  • De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108(20):8075–8080

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggermont JJ (2013a) Noise and the brain. Experience dependent developmental and adult plasticity. Academic Press, London

    Google Scholar 

  • Eggermont JJ (2013b) Hearing loss, hyperacusis, and tinnitus: what is modeled in animal research? Hear Res 295:140–149

    Article  PubMed  Google Scholar 

  • Eggermont JJ, Roberts LE (2004) The Neuroscience of tinnitus. Trends Neurosci 27:676–682

    Article  CAS  PubMed  Google Scholar 

  • Estes WK, Skinner BF (1941) Some quantitative properties of anxiety. J Exp Psychol 29:390–400

    Article  Google Scholar 

  • Goble TJ, Møller AR, Thompson LT (2009) Acute high-intensity sound exposure alters responses of place cells in hippocampus. Hear Res 253:52–59

    Article  CAS  PubMed  Google Scholar 

  • Graham CE, Vetter DE (2011) The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires corticotropin-releasing factor receptor 1 to establish normal hair cell innervation and cochlear sensitivity. J Neurosci 31(4):1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel JL (2003) Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 23(9):3944–3952

    CAS  PubMed  Google Scholar 

  • Halford JB, Anderson SD (1991) Anxiety and depression in tinnitus sufferers. J Psychosom Res 35:383–390

    Article  CAS  PubMed  Google Scholar 

  • Heffner HE, Harrington IA (2002) Tinnitus in hamsters following exposure to intense sound. Hear Res 170(1–2):83–95

    Article  PubMed  Google Scholar 

  • Henkin RI, Knigge KM (1963) Effect of sound on the hypothalamic-pituitary-adrenal axis. Am J Phys 204:710–714

    Google Scholar 

  • Horner KC (2003) The emotional ear in stress. Neurosci Biobehav Rev 27:437–446

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Su L, Xu YQ, Zhang H, Wang LW (2010) Behavioral and [F-18] fluorodeoxyglucose micro positron emission tomography imaging study in a rat chronic mild stress model of depression. Neuroscience 169:171–181

    Article  CAS  PubMed  Google Scholar 

  • Hubert GW, Li C, Rainnie DG, Muly EC (2014) Effects of stress on AMPA receptor distribution and function in the basolateral amygdala. Brain Struct Funct 219:1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Irvine DRF (2010) Plasticity in the auditory pathway: structural organization of the descending auditory pathway. In: Rees A, Palmer AR (eds) The Oxford handbook of auditory science: the auditory brain, 2nd edn. Oxford University Press, New York, pp 387–415

    Google Scholar 

  • Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:228–251

    Article  Google Scholar 

  • Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT (1988a) Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci 102:811–822

    Article  CAS  PubMed  Google Scholar 

  • Jastreboff PJ, Brennan JF, Sasaki CT (1988b) An animal model for tinnitus. Laryngoscope 98:280–286

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, van Dijk P, Nunes I, Rüttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33

    Article  PubMed  Google Scholar 

  • Kraus KS, Canlon B (2012) Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 288(1–2):34–46

    Article  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuk FK, Tyler RS, Russell D, Jordan H (1990) The psychometric properties of a tinnitus handicap questionnaire. Ear Hear 11:434–445

    Article  CAS  PubMed  Google Scholar 

  • Langguth B (2011) A review of tinnitus symptoms beyond ‘ringing in the ears’: a call to action. Curr Med Res Opin 27:1635–1643

    Article  PubMed  Google Scholar 

  • Langguth B, Landgrebe M, Kleinjung T, Sand GP, Hajak G (2011) Tinnitus and depression. World J Biol Psychiatry 12:489–500

    Article  PubMed  Google Scholar 

  • Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobarinas E, Sun W, Cushing R, Salvi R (2004) A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res 190(1–2):109–114

    Article  PubMed  Google Scholar 

  • Mazurek B, Haupt H, Joachim R, Klapp BF, Stöver T, Szczepek AJ (2010) Stress induces transient auditory hypersensitivity in rats. Hear Res 259(1–2):55–63

    Article  PubMed  Google Scholar 

  • Mazurek B, Haupt H, Olze H, Szczepek AJ (2012) Stress and tinnitus-from bedside to bench and back. Front Syst Neurosci 6:47. doi:10.3389/fnsys.2012.00047

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazurek B, Szczepek AJ, Hebert S (2015) Stress and tinnitus. HNO 63(4):258–265

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • Meltser I, Canlon B (2011) Protecting the auditory system with glucocorticoids. Hear Res 281(1–2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Muchnik C, Rosenthal T, Peleg E, Hildesheimer M (1998) Stress reaction to intense sound exposure under different arousal levels in guinea pigs. Acta Otolaryngol 118:646–650

    Article  CAS  PubMed  Google Scholar 

  • Nava N, Treccani G, Alabsi A, Kaastrup Mueller H, Elfving B, Popoli M, Wegener G, Nyengaard JR (2017) Temporal dynamics of acute stress-induced dendritic remodeling in medial prefrontal cortex and the protective effect of desipramine. Cerebral Cortex 27(1):694–705

    PubMed  Google Scholar 

  • Rarey KE, Gerhardt KJ, Curtis LM, ten Cate WJ (1995) Effect of stress on cochlear glucocorticoid protein, acoustic stress. Hear Res 82:135–138

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Leaver AM, Mühlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neuroscience 30(45):14972–14979

    Article  CAS  PubMed  Google Scholar 

  • Robinson SK, Viirre ES, Stein MB (2007) Antidepressant therapy in tinnitus. Hear Res 226:221–231

    Article  CAS  PubMed  Google Scholar 

  • Ruel J, Chabbert C, Nouvian R, Bendris R, Eybalin M, Leger CL, Bourien J, Mersel M, Puel JL (2008) Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci 28:7313–7323

    Article  CAS  PubMed  Google Scholar 

  • Rüttiger L, Ciuffani J, Zenner HP, Knipper M (2003) A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res 180(1–2):39–50

    Article  PubMed  Google Scholar 

  • Sahley TL, Nodar RH (2001) A biochemical model of peripheral tinnitus. Hear Res 152(1–2):43–54

    Article  CAS  PubMed  Google Scholar 

  • Sahley TL, Hammongs MD, Musiek FE (2013) Endogenous dynorphins, glutamate and N-methyl-D-aspartate(NMDA) receptors may participate in a stress-mediated type-I auditory neural exacerbation of tinnitus. Brain Res 1499:80–108

    Article  CAS  PubMed  Google Scholar 

  • Salloum RH, Sandridge S, Patton DJ, Stillitano G, Dawson G, Niforatos J, Santiago L, Kaltenbach JA (2016) Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test. Hear Res 331:92–100

    Article  CAS  PubMed  Google Scholar 

  • Searchfield GD, Morrison-Low J, Wise K (2007) Object identification and attention training for treating tinnitus. Prog Brain Res 166:441–460

    Article  PubMed  Google Scholar 

  • Shonkoff JP, Boyce WT, McEwen BS (2009) Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. JAMA 301(21):2252–2259

    Article  CAS  PubMed  Google Scholar 

  • Singer W, Zuccotti A, Jaumann M, Lee SC, Panford-Walsh R, Xiong H, Zimmermann U, Franz C, Geisler HS, Köpschall I, Rohbock K, Varakina K, Verpoorten S, Reinbothe T, Schimmang T, Rüttiger L, Knipper M (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47(1):261–279

    Article  CAS  PubMed  Google Scholar 

  • Timmermans W, Xiong H, Hoogenraad CC, Krugers HJ (2013) Stress and excitatory synapses: from health to disease. Neuroscience 248:626–636

    Article  CAS  PubMed  Google Scholar 

  • Toni R (2004) The neuroendocrine system: organization and homeostatic role. J Endocrinol Investig 27(6 Suppl):35–47

    CAS  Google Scholar 

  • Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195

    Article  PubMed  Google Scholar 

  • Wallhäusser-Franke E, Brade J, Balkenhol T, D-Amelio R, Seegmüller A, Delb W (2012) Tinnitus: distinguishing between subjectively perceived loudness and tinnitus-related distress. PLoS One 7:e34583

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165(1–2):96–102

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J. Eggermont Ph.D., F.R.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eggermont, J.J. (2017). Animal Models of Stress and Tinnitus. In: Szczepek, A., Mazurek, B. (eds) Tinnitus and Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-58397-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58397-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58396-9

  • Online ISBN: 978-3-319-58397-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics