Skip to main content

Action and Mechanisms of Action of the Chromogranin A Derived Peptide Pancreastatin

  • Chapter
  • First Online:
Chromogranins: from Cell Biology to Physiology and Biomedicine

Abstract

Pancreastatin (PST), is a biologically active peptide isolated from porcine pancreas in 1986. Soon after PST was found to be contained within the chromogranin A (CGA) sequence, and therefore distributed throughout the neuroendocrine and gastrointestinal systems. This finding started up the consideration of CGA as a source of different biologically active peptides, which were then identified.

Even though many metabolic effects, such as the modulation of secretion of different glands, as well as the general metabolism regulation, have been described, the definitive picture of the physiological role of PST has not yet been established. Nevertheless, the sum of these metabolic effects, forged the name of PST as a dysglycemic peptide, with conterregulatory effects on insulin action. Thus, elevated circulating levels of PST have been found in Type 2 diabetes, gestational diabetes and essential hypertension, suggesting that PST is a negative regulator of insulin sensitivity and glucose homeostasis. The mechanism of action whereby PST could modulate insulin action has been thoroughly studied in various cellular systems (rat liver cells and adipocytes), and G coupled protein nature of the receptor has been established. But, although the purification process is able to yield some amount of PST binding protein, the final characterization of such PST receptor have been elusive so far. On the other hand, a different kind of receptor for PST has been proposed, and it may be the surface chaperone GRP78. Therefore, PST could modulate the energy metabolism through different mechanisms, such as insulin signaling antagonism, and as a protein folding regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allu PK, Chirasani VR, Ghosh D, Mani A, Bera AK, Maji SK, Senapati S, Mullasari AS, Mahapatra NR (2014) Naturally occurring variants of the dysglycemic peptide pancreastatin: differential potencies for multiple cellular functions and structure-function correlation. J Biol Chem 289:4455–4469

    Article  CAS  PubMed  Google Scholar 

  • Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W, Pasqualini R (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6:275–284

    Article  CAS  PubMed  Google Scholar 

  • Arden SD, Rutherford NG, Guest PC, Curry WJ, Bailyes EM, Johnston CF, Hutton JC (1994) The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J 298(Pt 3):521–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay GK, Lu M, Avolio E, Siddiqui JA, Gayen JR, Wollam J, Vu CU, Chi NW, O’Connor DT, Mahata SK (2015) Pancreastatin-dependent inflammatory signaling mediates obesity-induced insulin resistance. Diabetes 64:104–116

    Article  CAS  PubMed  Google Scholar 

  • Biswas N, Friese RS, Gayen JR, Bandyopadhyay G, Mahata SK, O'Connor DT (2014) Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism. PLoS One 9:e84132

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmen GY, Victor SM (2006) Signalling mechanisms regulating lipolysis. Cell Signal 18:401–408

    Article  CAS  PubMed  Google Scholar 

  • Cohn DV, Zangerle R, Fischer-Colbrie R, Chu LL, Elting JJ, Hamilton JW, Winkler H (1982) Similarity of secretory protein I from parathyroid gland to chromogranin A from adrenal medulla. Proc Natl Acad Sci U S A 79:6056–6059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culhane KJ, Liu Y, Cai Y, Yan EC (2015) Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 6:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Curry WJ, Johnston CF, Shaw C, Buchanan KD (1990) Distribution and partial characterisation of immunoreactivity to the putative C-terminus of rat pancreastatin. Regul Pept 30:207–219

    Article  CAS  PubMed  Google Scholar 

  • Curry WJ, Johnston CF, Hutton JC, Arden SD, Rutherford NG, Shaw C, Buchanan KD (1991) The tissue distribution of rat chromogranin A-derived peptides: evidence for differential tissue processing from sequence specific antisera. Histochemistry 96:531–538

    Article  CAS  PubMed  Google Scholar 

  • Delpino A, Castelli M (2002) The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation. Biosci Rep 22:407–420

    Article  CAS  PubMed  Google Scholar 

  • Drees BM, Hamilton JW (1992) Pancreastatin and bovine parathyroid cell secretion. Bone Miner 17:335–346

    Article  CAS  PubMed  Google Scholar 

  • Efendic S, Tatemoto K, Mutt V, Quan C, Chang D, Ostenson CG (1987) Pancreastatin and islet hormone release. Proc Natl Acad Sci U S A 84:7257–7260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiden LE (1987) Is chromogranin a prohormone? Nature 325:301

    Article  CAS  PubMed  Google Scholar 

  • Fasciotto BH, Gorr SU, DeFranco DJ, Levine MA, Cohn DV (1989) Pancreastatin, a presumed product of chromogranin-A (secretory protein-I) processing, inhibits secretion from porcine parathyroid cells in culture. Endocrinology 125:1617–1622

    Article  CAS  PubMed  Google Scholar 

  • Fasciotto BH, Gorr SU, Bourdeau AM, Cohn DV (1990) Autocrine regulation of parathyroid secretion: inhibition of secretion by chromogranin-A (secretory protein-I) and potentiation of secretion by chromogranin-A and pancreastatin antibodies. Endocrinology 127:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi S, Tamamura H, Ohta M, Yoshizawa K, Funakoshi A, Miyasaka K, Tateishi K, Tatemoto K, Nakano I, Yajima H (1989a) Isolation and characterization of a tumor-derived human pancreastatin-related protein. Biochem Biophys Res Commun 164:141–148

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi A, Miyasaka K, Kitani K, Tamamura H, Funakoshi S, Yajima H (1989b) Bioactivity of synthetic C-terminal fragment of rat pancreastatin on endocrine pancreas. Biochem Biophys Res Commun 158:844–849

    Article  CAS  PubMed  Google Scholar 

  • Gayen JR, Saberi M, Schenk S, Biswas N, Vaingankar SM, Cheung WW, Najjar SM, O'Connor DT, Bandyopadhyay G, Mahata SK (2009) A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 284:28498–28509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Yanes C, Sanchez-Margalet V (2000) Pancreastatin modulates insulin signaling in rat adipocytes: mechanisms of cross-talk. Diabetes 49:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Yanes C, Sanchez-Margalet V (2001) Pancreastatin, a chromogranin-A-derived peptide, inhibits insulin-stimulated glycogen synthesis by activating GSK-3 in rat adipocytes. Biochem Biophys Res Commun 289:282–287

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Yanes C, Sanchez-Margalet V (2002) Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 299:525–531

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Yanes C, Sanchez-Margalet V (2003) Pancreastatin, a chromogranin A-derived peptide, inhibits leptin and enhances UCP-2 expression in isolated rat adipocytes. Cell Mol Life Sci 60:2749–2756

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Yanes C, Santos-Alvarez J, Sanchez-Margalet V (1999) Characterization of pancreastatin receptors and signaling in adipocyte membranes. Biochim Biophys Acta 1451:153–162

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Yanes C, Santos-Alvarez J, Sanchez-Margalet V (2001) Pancreastatin, a chromogranin A-derived peptide, activates Galpha(16) and phospholipase C-beta(2) by interacting with specific receptors in rat heart membranes. Cell Signal 13:43–49

    Article  CAS  PubMed  Google Scholar 

  • Hakanson R, Tielemans Y, Chen D, Andersson K, Ryberg B, Mattsson H, Sundler F (1992) The biology and pathobiology of the ECL cells. Yale J Biol Med 65:761–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hakanson R, Ding XQ, Norlen P, Chen D (1995) Circulating pancreastatin is a marker for the enterochromaffin-like cells of the rat stomach. Gastroenterology 108:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Kogire M, Lluis F, Gomez G, Tatemoto K, Greeley GH Jr, Thompson JC (1990) Stimulatory effect of pancreastatin on gastric acid secretion in conscious dogs. Gastroenterology 99:61–65

    Article  CAS  PubMed  Google Scholar 

  • Hertelendy ZI, Patel DG, Knittel JJ (1996) Pancreastatin inhibits insulin secretion in RINm5F cells through obstruction of G-protein mediated, calcium-directed exocytosis. Cell Calcium 19:125–132

    Article  CAS  PubMed  Google Scholar 

  • Herzig KH, Louie DS, Tatemoto K, Chung OY (1992) Pancreastatin inhibits pancreatic enzyme secretion by presynaptic modulation of acetylcholine release. Am J Phys 262:G113–G117

    CAS  Google Scholar 

  • Huttner WB, Benedum UM (1987) Chromogranin A and pancreastatin. Nature 325:305

    Article  CAS  PubMed  Google Scholar 

  • Kitayama N, Tateishi K, Funakoshi A, Miyasaka K, Shimazoe T, Kono A, Iwamoto N, Matsuoka Y (1994) Pancreastatin molecular forms in normal human plasma. Life Sci 54:1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364:249–252

    Article  CAS  PubMed  Google Scholar 

  • Konecki DS, Benedum UM, Gerdes HH, Huttner WB (1987) The primary structure of human chromogranin A and pancreastatin. J Biol Chem 262:17026–17030

    CAS  PubMed  Google Scholar 

  • Leduc R, Hendy GN, Seidah NG, Chretien M, Lazure C (1990) Fragmentation of bovine chromogranin A by plasma kallikrein. Life Sci 46:1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Lewis JJ, Zdon MJ, Adrian TE, Modlin IM (1988) Pancreastatin: a novel peptide inhibitor of parietal cell secretion. Surgery 104:1031–1036

    CAS  PubMed  Google Scholar 

  • Lindstrom E, Bjorkquist M, Boketoft A, Chen D, Zhao CM, Kimura K, Hakanson R (1997) Release of histamine and pancreastatin from isolated rat stomach ECL cells. Inflamm Res 46(Suppl 1):S109–S110

    CAS  PubMed  Google Scholar 

  • Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217:247–257

    Article  CAS  PubMed  Google Scholar 

  • Misra UK, Pizzo SV (2010) Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 15:173–182

    Article  CAS  PubMed  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281:13694–13707

    Article  CAS  PubMed  Google Scholar 

  • Miyasaka K, Funakoshi A, Nakamura R, Kitani K, Shimizu F, Tatemoto K (1989) Effects of porcine pancreastatin on postprandial pancreatic exocrine secretion and endocrine functions in the conscious rat. Digestion 43:204–211

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DT, Cadman PE, Smiley C, Salem RM, Rao F, Smith J, Funk SD, Mahata SK, Mahata M, Wen G, Taupenot L, Gonzalez-Yanes C, Harper KL, Henry RR, Sanchez-Margalet V (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab 90:5414–5425

    Article  PubMed  Google Scholar 

  • Ohneda A, Koizumi F, Ohneda M (1989) Effect of porcine pancreastatin on endocrine function of canine pancreas. Tohoku J Exp Med 159:291–298

    Article  CAS  PubMed  Google Scholar 

  • Peiro E, Miralles P, Silvestre RA, Villanueva ML, Marco J (1989) Pancreastatin inhibits insulin secretion as induced by glucagon, vasoactive intestinal peptide, gastric inhibitory peptide, and 8-cholecystokinin in the perfused rat pancreas. Metabolism 38:679–682

    Article  CAS  PubMed  Google Scholar 

  • Sanchez V, Calvo JR, Goberna R (1990) Glycogenolytic effect of pancreastatin in the rat. Biosci Rep 10:87–91

    Article  CAS  PubMed  Google Scholar 

  • Sanchez V, Lucas M, Calvo JR, Goberna R (1992) Glycogenolytic effect of pancreastatin in isolated rat hepatocytes is mediated by a cyclic-AMP-independent Ca(2+)-dependent mechanism. Biochem J 284(Pt 3):659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Margalet V (1999) Modulation of insulin receptor signalling by pancreastatin in HTC hepatoma cells. Diabetologia 42:317–325

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Goberna R (1994a) Pancreastatin activates pertussis toxin-sensitive guanylate cyclase and pertussis toxin-insensitive phospholipase C in rat liver membranes. J Cell Biochem 55:173–181

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Goberna R (1994b) Pancreastatin inhibits insulin-stimulated glycogen synthesis but not glycolysis in rat hepatocytes. Regul Pept 51:215–220

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Gonzalez-Yanes C (1998) Pancreastatin inhibits insulin action in rat adipocytes. Am J Phys 275:E1055–E1060

    CAS  Google Scholar 

  • Sanchez-Margalet V, Santos-Alvarez J (1997) Solubilization and molecular characterization of active pancreastatin receptors from rat liver membranes. Endocrinology 138:1712–1718

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Lucas M, Goberna R (1992) Pancreastatin increases cytosolic Ca2+ in insulin secreting RINm5F cells. Mol Cell Endocrinol 88:129–133

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Lucas M, Goberna R (1994a) Pancreastatin activates protein kinase C by stimulating the formation of 1,2-diacylglycerol in rat hepatocytes. Biochem J 303(Pt 1):51–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Margalet V, Valle M, Goberna R (1994b) Receptors for pancreastatin in rat liver membranes: molecular identification and characterization by covalent cross-linking. Mol Pharmacol 46:24–29

    CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Valle M, Lobon JA, Maldonado A, Escobar-Jimenez F, Olivan J, Perez-Cano R, Goberna R (1995) Increased plasma pancreastatin-like immunoreactivity levels in non-obese patients with essential hypertension. J Hypertens 13:251–258

    CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Lucas M, Goberna R (1996) Pancreastatin: further evidence for its consideration as a regulatory peptide. J Mol Endocrinol 16:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Gonzalez-Yanes C, Santos-Alvarez J, Najib S (2000) Characterization of pancreastatin receptor and signaling in rat HTC hepatoma cells. Eur J Pharmacol 397:229–235

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Gonzalez-Yanes C, Najib S (2001) Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells. J Hepatol 35:80–85

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Santos-Alvarez J, Diaz-Troya S (2003) Purification of pancreastatin receptor from rat liver membranes. Methods Mol Biol 228:187–194

    CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Gonzalez-Yanes C, Najib S, Santos-Alvarez J (2010) Metabolic effects and mechanism of action of the chromogranin A-derived peptide pancreastatin. Regul Pept 161:8–14

    Article  CAS  PubMed  Google Scholar 

  • Santos-Alvarez J, Sanchez-Margalet V (1998) Pancreastatin activates beta3 isoform of phospholipase C via G(alpha)11 protein stimulation in rat liver membranes. Mol Cell Endocrinol 143:101–106

    Article  CAS  PubMed  Google Scholar 

  • Santos-Alvarez J, Sanchez-Margalet V (1999) G protein G alpha q/11 and G alpha i1,2 are activated by pancreastatin receptors in rat liver: studies with GTP-gamma 35S and azido-GTP-alpha-32P. J Cell Biochem 73:469–477

    Article  CAS  PubMed  Google Scholar 

  • Santos-Alvarez J, Sanchez-Margalet V (2000) Affinity purification of pancreastatin receptor-Gq/11 protein complex from rat liver membranes. Arch Biochem Biophys 378:151–156

    Article  CAS  PubMed  Google Scholar 

  • Santos-Alvarez J, Gonzalez-Yanes C, Sanchez-Margalet V (1998) Pancreastatin receptor is coupled to a guanosine triphosphate-binding protein of the G(q/11)alpha family in rat liver membranes. Hepatology 27:608–614

    Article  CAS  PubMed  Google Scholar 

  • Schmidt WE, Creutzfeldt W (1991) Pancreastatin–a novel regulatory peptide? Acta Oncol 30:441–449

    Article  CAS  PubMed  Google Scholar 

  • Schmidt WE, Siegel EG, Kratzin H, Creutzfeldt W (1988) Isolation and primary structure of tumor-derived peptides related to human pancreastatin and chromogranin A. Proc Natl Acad Sci U S A 85:8231–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiya K, Haji M, Fukahori M, Takayanagi R, Ohashi M, Kurose S-n, Oyama M, Tateishi K, Funakosh A, Nawata H (1994) Pancreastatin-like immunoreactivity of cerebrospinal fluid in patients with Alzheimer type dementia: evidence of aberrant processing of pancreastatin in Alzheimer type dementia. Neurosci Lett 177:123–126

    Article  CAS  PubMed  Google Scholar 

  • Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W, Gray PC (2008) GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 28:666–677

    Article  CAS  PubMed  Google Scholar 

  • Simon JP, Aunis D (1989) Biochemistry of the chromogranin A protein family. Biochem J 262:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    Article  CAS  PubMed  Google Scholar 

  • Tamamura H, Ohta M, Yoshizawa K, Ono Y, Funakoshi A, Miyasaka K, Tateishi K, Jimi A, Yajima H, Fujii N (1990) Isolation and characterization of a tumor-derived human protein related to chromogranin A and its in vitro conversion to human pancreastatin-48. Eur J Biochem 191:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tatemoto K, Mutt V (1978) Chemical determination of polypeptide hormones. Proc Natl Acad Sci U S A 75:4115–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478

    Article  CAS  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O'Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valicherla GR, Hossain Z, Mahata SK, Gayen JR (2013) Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 45:1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wey S, Zhang Y, Ye R, Lee AS (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11:2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkinson A, Jonsson AC, Davison M, Young J, Lee CM, Moore S, Dockray GJ (1991) Heterogeneity of chromogranin A-derived peptides in bovine gut, pancreas and adrenal medulla. Biochem J 276(Pt 2):471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkinson A, Rogers M, Dockray GJ (1993) Post-translational processing of chromogranin A: differential distribution of phosphorylated variants of pancreastatin and fragments 248-313 and 297-313 in bovine pancreas and ileum. Biochem J 295(Pt 3):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Mochizuki T, Kogire M, Ishizuka J, Yanaihara N, Thompson JC, Greeley GH Jr (1990) Pancreastatin: characterization of biological activity. Biochem Biophys Res Commun 173:1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Fasciotto BH, Darling DS, Cohn DV (1994) Pancreastatin, a chromogranin A-derived peptide, inhibits transcription of the parathyroid hormone and chromogranin A genes and decreases the stability of the respective messenger ribonucleic acids in parathyroid cells in culture. Endocrinology 134:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu R, Ni M, Gill P, Lee AS (2010) Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem 285:15065–15075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support of the Consejería de Innovacion, Ciencia y Empresa, Junta de Andalucía, Spain (Proyecto de Excelencia 08-CTS-4329), funded in part by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sánchez-Margalet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evtikhova, N.E., Pérez-Pérez, A., Jiménez-Cortegana, C., Carmona-Fernández, A., Vilariño-García, T., Sánchez-Margalet, V. (2017). Action and Mechanisms of Action of the Chromogranin A Derived Peptide Pancreastatin. In: Angelone, T., Cerra, M., Tota, B. (eds) Chromogranins: from Cell Biology to Physiology and Biomedicine. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-58338-9_14

Download citation

Publish with us

Policies and ethics