Skip to main content

The Critical Role of Mitochondria in Drug-Induced Liver Injury

  • Chapter
  • First Online:
Molecules, Systems and Signaling in Liver Injury

Abstract

Idiosyncratic drug-induced liver injury (DILI) is a rare form of liver injury that occurs in patients taking therapeutic doses of drugs. While idiosyncratic hepatotoxic drugs are not structurally or chemically related, most drugs that cause DILI have been shown to “stress” mitochondria through inhibition of mitochondrial respiration, increased mitochondrial reactive oxygen species (ROS) generation, and other changes that disrupt mitochondrial homeostasis. In most cases, hepatocytes adapt to drug-induced mitochondrial stress by activating adaptation signaling pathways, including mitochondrial adaptive responses such as autophagy/mitophagy, mitochondrial remodeling, and alterations in mitochondrial fusion-fission. Due to these adaptations, drug intake alone is not sufficient to cause liver injury, with acetaminophen being the notable exception. Idiosyncratic DILI involves other extrinsic factors, including inflammation and the adaptive immune system. Inflammation may promote DILI because mitochondrial stress (i.e., increased mitochondrial ROS generation) induced by hepatotoxic drugs can inhibit adaptation/survival signaling pathways, such as NF-κB, needed to withstand the cytotoxic effects of tumor necrosis factor-α (TNF) released during inflammation. If mitochondrial and hepatocellular injury reach a critical threshold, death signaling pathways involving c-Jun N-terminal kinase (JNK) that target mitochondria become activated. Binding of activated JNK to mitochondria triggers the mitochondrial permeability transition (MPT) that results in hepatocyte death and liver injury. Mitochondria, therefore, play a critical role in all stages of DILI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALT:

Alanine aminotransferase

AMPK:

AMP-activated protein kinase

APAP:

Acetaminophen

ARE:

Antioxidant response element

ASK1:

Apoptosis signal-regulating kinase 1

Bcl-2:

B-cell lymphoma-2

Cu3:

Cullin-dependent E3 ubiquitin ligase complex

CYP450:

Cytochrome P450

DILI:

Drug-induced liver injury

Drp1:

Dynamin-related protein 1

GCL:

Glutamate cysteine ligase

GSH:

Glutathione

GSK-3β:

Glycogen synthase kinase-3β

GWAS:

Genome-wide association studies

HLA:

Human leukocyte antigen

JNK:

c-Jun N-terminal kinase

Keap1:

Kelch-like ECH-associated protein 1

LPS:

Lipopolysaccharide

Mcl-1:

Induced myeloid leukemia cell differentiation protein

Mfn:

Mitofusin

MLK3:

Mixed-lineage kinase-3

MOMP:

Mitochondrial outer membrane permeabilization

MPT:

Mitochondrial permeability transition

NAPQI:

N-Acetyl-p-benzo-quinoneimine

Nrf-2:

Nuclear factor (erythroid-derived 2)-like-2

Opa1:

Optic atrophy 1

PGC-1α:

Proliferator-activated receptor gamma coactivator-1α

PKC:

Protein kinase C

RIP1:

Receptor-interacting serine/threonine-protein kinase 1

ROS:

Reactive oxygen species

Sab:

SH3 homology associated BTK-binding protein

SOD:

Superoxide dismutase

TNF:

Tumor necrosis factor-α

Bibliography

  • Adam J, Wuillemin N, Watkins S, Jamin H, Eriksson KK, Villiger P et al (2014) Abacavir induced T cell reactivity from drug naive individuals shares features of allo-immune responses. PLoS One. 9(4):e95339

    Article  PubMed  PubMed Central  Google Scholar 

  • Alfirevic A, Gonzalez-Galarza F, Bell C, Martinsson K, Platt V, Bretland G et al (2012) In silico analysis of HLA associations with drug-induced liver injury: use of a HLA-genotyped DNA archive from healthy volunteers. Genome Med. 4(6):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Sanchez R, Montavon F, Hartung T, Pahler A (2006) Thiazolidinedione bioactivation: a comparison of the bioactivation potentials of troglitazone, rosiglitazone, and pioglitazone using stable isotope-labeled analogues and liquid chromatography tandem mass spectrometry. Chem Res Toxicol. 19(8):1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Antoine DJ, Jenkins RE, Dear JW, Williams DP, McGill MR, Sharpe MR et al (2012) Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity. J Hepatol. 56(5):1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajt ML, Farhood A, Lemasters JJ, Jaeschke H (2008) Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther. 324(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Baulies A, Ribas V, Nunez S, Torres S, Alarcon-Vila C, Martinez L et al (2015) Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy. Sci Rep. 5:18017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boelsterli UA (2003) Animal models of human disease in drug safety assessment. J Toxicol Sci. 28(3):109–121

    Article  CAS  PubMed  Google Scholar 

  • Boelsterli UA, Lim PL (2007) Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol. 220(1):92–107

    Article  CAS  PubMed  Google Scholar 

  • Budas GR, Churchill EN, Disatnik MH, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res. 88(1):83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burcham PC, Harman AW (1991) Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem. 266(8):5049–5054

    CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 29(3-4):222–230

    Article  CAS  PubMed  Google Scholar 

  • Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 22:79–99

    Article  CAS  PubMed  Google Scholar 

  • Chang AH, Sancheti H, Garcia J, Kaplowitz N, Cadenas E, Han D (2014) Respiratory substrates regulate S-nitrosylation of mitochondrial proteins through a thiol-dependent pathway. Chem Res Toxicol. 27(5):794–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF et al (1998) Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol. 11(4):295–301

    Article  CAS  PubMed  Google Scholar 

  • Churchill EN, Mochly-Rosen D (2007) The roles of PKCdelta and epsilon isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans. 35(Pt 5):1040–1042

    Article  CAS  PubMed  Google Scholar 

  • Copple IM, Goldring CE, Jenkins RE, Chia AJ, Randle LE, Hayes JD et al (2008) The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2 cell defense system. Hepatology. 48(4):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Copple IM, Goldring CE, Kitteringham NR, Park BK (2010) The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol. 196:233–266

    Article  CAS  Google Scholar 

  • Dahlin DC, Miwa GT, Lu AY, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A. 81(5):1327–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly AK (2012) Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annu Rev Pharmacol Toxicol. 52:21–35

    Article  CAS  PubMed  Google Scholar 

  • Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A et al (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 41(7):816–819

    Article  CAS  PubMed  Google Scholar 

  • Dara L, Johnson H, Suda J, Win S, Gaarde W, Han D et al (2015) Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology. 62(6):1847–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Wong R, Rajapakse N, Murphy E, Steenbergen C (2008) Glycogen Synthase Kinase 3 Inhibition Slows Mitochondrial Adenine Nucleotide Transport and Regulates Voltage-Dependent Anion Channel Phosphorylation. Circ Res. 103:983–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 393(7):547–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Guo F, Ni HM, Bockus A, Manley S, Stolz DB et al (2012a) Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J Biol Chem. 287(50):42379–42388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Li M, Biazik JM, Morgan DG, Guo F, Ni HM et al (2012b) Electron microscopic analysis of a spherical mitochondrial structure. J Biol Chem. 287(50):42373–42378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du K, Farhood A, Jaeschke H (2017) Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol 91:761–773

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda S et al (2009) Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol. 37(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Gandhi A, Guo T, Ghose R (2010) Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNF-alpha) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. J Toxicol Sci. 35(2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem. 285(51):39646–39654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldring CE, Kitteringham NR, Elsby R, Randle LE, Clement YN, Williams DP et al (2004) Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology. 39(5):1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 13(5):589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J, Hoyos B, Acin-Perez R, Vinogradov V, Shabrova E, Zhao F et al (2012) Two protein kinase C isoforms, delta and epsilon, regulate energy homeostasis in mitochondria by transmitting opposing signals to the pyruvate dehydrogenase complex. FASEB J. 26(8):3537–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N (2006) c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 131(1):165–178

    Article  CAS  PubMed  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003a) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem. 278(8):5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Han D, Canali R, Rettori D, Kaplowitz N (2003b) Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol. 64(5):1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Han D, Hanawa N, Saberi B, Kaplowitz N (2006a) Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol. 291(1):G1–G7

    Article  CAS  PubMed  Google Scholar 

  • Han D, Hanawa N, Saberi B, Kaplowitz N (2006b) Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosis. Free Radic Biol Med. 41(4):627–639

    Article  CAS  PubMed  Google Scholar 

  • Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N (2009) Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 11:2245–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Shinohara M, Ybanez MD, Saberi B, Kaplowitz N (2010) Signal transduction pathways involved in drug-induced liver injury. Handb Exp Pharmacol. 196:267–310

    Article  CAS  Google Scholar 

  • Han D, Ybanez MD, Johnson HS, McDonald JN, Mesropyan L, Sancheti H et al (2012) Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations. J Biol Chem. 287(50):42165–42179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ et al (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci. 34(4):243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Johnson HS, Rao MP, Martin G, Sancheti H, Silkwood KH et al (2016) Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic Biol Med. 102:100–110

    Article  PubMed  CAS  Google Scholar 

  • Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem. 283(20):13565–13577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hautekeete ML, Horsmans Y, Van Waeyenberge C, Demanet C, Henrion J, Verbist L et al (1999) HLA association of amoxicillin-clavulanate--induced hepatitis. Gastroenterology. 117(5):1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K et al (2008) Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 8(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Holt M, Ju C (2010) Drug-induced liver injury. Handb Exp Pharmacol. 196:3–27

    Article  CAS  Google Scholar 

  • Hu J, Ramshesh VK, McGill MR, Jaeschke H, Lemasters JJ (2016) Low Dose Acetaminophen Induces Reversible Mitochondrial Dysfunction Associated with Transient c-Jun N-Terminal Kinase Activation in Mouse Liver. Toxicol Sci. 150(1):204–215

    Article  CAS  PubMed  Google Scholar 

  • Iancu TC, Mason WH, Neustein HB (1977) Ultrastructural abnormalities of liver cells in Reye’s syndrome. Hum Pathol. 8(4):421–431

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SH, Akazawa Y, Cazanave SC, Bronk SF, Elmi NA, Werneburg NW et al (2011) Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J Hepatol. 54(4):765–772

    Article  CAS  PubMed  Google Scholar 

  • Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M et al (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 486(7404):554–558

    CAS  PubMed  Google Scholar 

  • Jones DP, Lemasters JJ, Han D, Boelsterli UA, Kaplowitz N (2010) Mechanisms of pathogenesis in drug hepatotoxicity putting the stress on mitochondria. Mol Interv. 10(2):98–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW et al (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 113(11):1535–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplowitz N (2002) Biochemical and cellular mechanisms of toxic liver injury. Semin Liver Dis. 22(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 4(6):489–499

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol. 25:715–744

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Kurono C, Wozniak M, Ostrowski M, Teranishi M, Nishizawa Y et al (1999) Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Med. 26(3-4):396–409

    Article  CAS  PubMed  Google Scholar 

  • Kashimshetty R, Desai VG, Kale VM, Lee T, Moland CL, Branham WS et al (2009) Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity. Toxicol Appl Pharmacol. 238(2):150–159

    Article  CAS  PubMed  Google Scholar 

  • Kheifets V, Mochly-Rosen D (2007) Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol Res. 55(6):467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kier LD, Neft R, Tang L, Suizu R, Cook T, Onsurez K et al (2004) Applications of microarrays with toxicologically relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro. Mutat Res. 549(1-2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Latchoumycandane C, Goh CW, Ong MM, Boelsterli UA (2007) Mitochondrial protection by the JNK inhibitor leflunomide rescues mice from acetaminophen-induced liver injury. Hepatology. 45(2):412–421

    Article  CAS  PubMed  Google Scholar 

  • Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med. 349(5):474–485

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Imaizumi N, Chamberland SR, Alder NN, Boelsterli UA (2015) Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology. 61(1):326–336

    Article  CAS  PubMed  Google Scholar 

  • Liguori MJ, Anderson MG, Bukofzer S, McKim J, Pregenzer JF, Retief J et al (2005) Microarray analysis in human hepatocytes suggests a mechanism for hepatotoxicity induced by trovafloxacin. Hepatology. 41(1):177–186

    Article  CAS  PubMed  Google Scholar 

  • Liguori MJ, Ditewig AC, Maddox JF, Luyendyk JP, Lehman-McKeeman LD, Nelson DM et al (2010) Comparison of TNFalpha to Lipopolysaccharide as an Inflammagen to Characterize the Idiosyncratic Hepatotoxicity Potential of Drugs: Trovafloxacin as an Example. Int J Mol Sci. 11(11):4697–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou H, Kaplowitz N (2007) Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms. J Biol Chem. 282(40):29470–29481

    Article  CAS  PubMed  Google Scholar 

  • Lucena MI, Andrade RJ, Martinez C, Ulzurrun E, Garcia-Martin E, Borraz Y et al (2008) Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology. 48(2):588–596

    Article  PubMed  Google Scholar 

  • Lucena MI, Garcia-Martin E, Andrade RJ, Martinez C, Stephens C, Ruiz JD et al (2010) Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology. 52(1):303–312

    Article  CAS  PubMed  Google Scholar 

  • Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ et al (2011) Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 141(1):338–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luyendyk JP, Maddox JF, Cosma GN, Ganey PE, Cockerell GL, Roth RA (2003) Ranitidine treatment during a modest inflammatory response precipitates idiosyncrasy-like liver injury in rats. J Pharmacol Exp Ther. 307(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Maddox JF, Amuzie CJ, Li M, Newport SW, Sparkenbaugh E, Cuff CF et al (2010) Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity. J Toxicol Environ Health A. 73(1):58–73

    Article  CAS  PubMed  Google Scholar 

  • Matsumaru K, Ji C, Kaplowitz N (2003) Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology. 37(6):1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 21(6):749–760

    Article  CAS  PubMed  Google Scholar 

  • McGill MR, Staggs VS, Sharpe MR, Lee WM, Jaeschke H (2014) Acute Liver Failure Study G. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology. 60(4):1336–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto T, Tanaka A, Taki Y, Noguchi M, Yokoo N, Nishihira T et al (1988) Changes in concentrations of respiratory components and cytochrome oxidase activity in mitochondria obtained from carbon tetrachloride-induced cirrhotic rat liver. Clin Sci (Lond). 74(5):485–489

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Matsumaru K, Feng G, Kaplowitz N (2002) Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-alpha-induced apoptosis in cultured mouse hepatocytes. Hepatology. 36(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Yanai A et al (2008) Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology. 135(4):1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX (2012) Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology. 55(1):222–232

    Article  CAS  PubMed  Google Scholar 

  • Ni HM, Williams JA, Jaeschke H, Ding WX (2013) Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox biology. 1(1):427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN et al (2000) Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut. 47(5):717–720

    Article  PubMed  PubMed Central  Google Scholar 

  • Olafsdottir K, Reed DJ (1988) Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment. Biochim Biophys Acta. 964(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Ong MM, Wang AS, Leow KY, Khoo YM, Boelsterli UA (2006) Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2(+/-) mice. Free Radic Biol Med. 40(3):420–429

    Article  CAS  PubMed  Google Scholar 

  • Ong MM, Latchoumycandane C, Boelsterli UA (2007) Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci. 97(1):205–213

    Article  CAS  PubMed  Google Scholar 

  • Ostapowicz G, Fontana RJ, Schiodt FV, Larson A, Davern TJ, Han SH et al (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med. 137(12):947–954

    Article  PubMed  Google Scholar 

  • Osterloh J, Cunningham W, Dixon A, Combest D (1989) Biochemical relationships between Reye’s and Reye’s-like metabolic and toxicological syndromes. Med Toxicol Adverse Drug Exp. 4(4):272–294

    Article  CAS  PubMed  Google Scholar 

  • Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem. 149(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Porceddu M, Buron N, Roussel C, Labbe G, Fromenty B, Borgne-Sanchez A (2012) Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicol Sci. 129(2):332–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P (2011) Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 67(1-2):103–118

    Article  CAS  PubMed  Google Scholar 

  • Roth RA, Ganey PE (2010) Intrinsic versus idiosyncratic drug-induced hepatotoxicity--two villains or one? J Pharmacol Exp Ther. 332(3):692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruepp SU, Tonge RP, Shaw J, Wallis N, Pognan F (2002) Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci. 65(1):135–150

    Article  CAS  PubMed  Google Scholar 

  • Saberi B, Shinohara M, Ybanez MD, Hanawa N, Gaarde WA, Kaplowitz N et al (2008) Regulation of H(2)O(2)-induced necrosis by PKC and AMP-activated kinase signaling in primary cultured hepatocytes. Am J Physiol Cell Physiol. 295(1):C50–C63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saberi B, Ybanez MD, Johnson HS, Gaarde WA, Han D, Kaplowitz N (2014) Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through c-jun-N-terminal kinase (JNK)-dependent and -independent signaling pathways. Hepatology. 59:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 362(18):1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe RF (2006) Cell death in the liver-all roads lead to JNK. Gastroenterology. 131(1):314–316

    Article  CAS  PubMed  Google Scholar 

  • Seki E, Brenner DA, Karin M (2012) A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology. 143(2):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Gadang V, Jaeschke A (2012) Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol. 82(5):1001–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw PJ, Hopfensperger MJ, Ganey PE, Roth RA (2007) Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicol Sci. 100(1):259–266

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Ybanez MD, Win S, Than TA, Jain S, Gaarde WA et al (2010) Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem. 285(11):8244–8255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiryaeva A, Baidyuk E, Arkadieva A, Okovityy S, Morozov V, Sakuta G (2008) Hepatocyte mitochondrion electron-transport chain alterations in CCl(4) and alcohol induced hepatitis in rats and their correction with simvastatin. J Bioenerg Biomembr. 40(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Shishido S, Koga H, Harada M, Kumemura H, Hanada S, Taniguchi E et al (2003) Hydrogen peroxide overproduction in megamitochondria of troglitazone-treated human hepatocytes. Hepatology. 37(1):136–147

    Article  CAS  PubMed  Google Scholar 

  • Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L et al (2010) A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet. 42(8):711–714

    Article  CAS  PubMed  Google Scholar 

  • Spahr L, Rubbia-Brandt L, Burkhard PR, Assal F, Hadengue A (2000) Tolcapone-related fulminant hepatitis: electron microscopy shows mitochondrial alterations. Dig Dis Sci. 45(9):1881–1884

    Article  CAS  PubMed  Google Scholar 

  • Thames G (2004) Drug-induced liver injury: what you need to know. Gastroenterol Nurs. 27(1):31–33

    Article  PubMed  Google Scholar 

  • Than TA, Lou H, Ji C, Win S, Kaplowitz N (2011) Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells. J Biol Chem. 286(25):22047–22054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong KI, Padmanabhan B, Kobayashi A, Shang C, Hirotsu Y, Yokoyama S et al (2007) Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol 27(21):7511–7521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tukov FF, Luyendyk JP, Ganey PE, Roth RA (2007) The role of tumor necrosis factor alpha in lipopolysaccharide/ranitidine-induced inflammatory liver injury. Toxicol Sci. 100(1):267–280

    Article  CAS  PubMed  Google Scholar 

  • Uetrecht J (2009) Immunoallergic drug-induced liver injury in humans. Semin Liver Dis. 29(4):383–392

    Article  CAS  PubMed  Google Scholar 

  • Ulrich RG (2007) Idiosyncratic toxicity: a convergence of risk factors. Annu Rev Med. 58:17–34

    Article  CAS  PubMed  Google Scholar 

  • Vick B, Weber A, Urbanik T, Maass T, Teufel A, Krammer PH et al (2009) Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology. 49(2):627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins PB (2005) Idiosyncratic liver injury: challenges and approaches. Toxicol Pathol. 33(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Watkins PB (2009) Biomarkers for the diagnosis and management of drug-induced liver injury. Semin Liver Dis. 29(4):393–399

    Article  CAS  PubMed  Google Scholar 

  • Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW et al (2006) Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 296(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 11(12):872–884

    Article  CAS  PubMed  Google Scholar 

  • Wiltshire C, Gillespie DA, May GH (2004) Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein. Biochem Soc Trans. 32(Pt 6):1075–1077

    Article  CAS  PubMed  Google Scholar 

  • Win S, Than TA, Han D, Petrovic LM, Kaplowitz N (2011) c-Jun N-terminal kinase (JNK)-dependent acute liver injury from acetaminophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice. J Biol Chem. 286(40):35071–35078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win S, Than TA, Fernandez-Checa JC, Kaplowitz N (2014) JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis. 5:e989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win S, Than TA, Le BH, Garcia-Ruiz C, Fernandez-Checa JC, Kaplowitz N (2015) Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J Hepatol. 62(6):1367–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win S, Than TA, Min RW, Aghajan M, Kaplowitz N (2016) c-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src. Hepatology. 63(6):1987–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winnike JH, Li Z, Wright FA, Macdonald JM, O’Connell TM, Watkins PB (2010) Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin Pharmacol Ther. 88(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Wong GH, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 58(5):923–931

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Zhao L, Yang P, Zhou W, Li B, Moorhead JF et al (2016) Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice. PLoS One. 11(7):e0159512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wullaert A, Heyninck K, Beyaert R (2006) Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol. 72(9):1090–1101

    Article  CAS  PubMed  Google Scholar 

  • Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci. 105(1):97–105

    Article  CAS  PubMed  Google Scholar 

  • Yin XM, Ding WX, Gao W (2008) Autophagy in the liver. Hepatology. 47(5):1773–1785

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derick Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Decker, C.W. et al. (2017). The Critical Role of Mitochondria in Drug-Induced Liver Injury. In: Ding, WX., Yin, XM. (eds) Molecules, Systems and Signaling in Liver Injury. Cell Death in Biology and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-58106-4_8

Download citation

Publish with us

Policies and ethics