Skip to main content

The Switch: Mechanisms Governing Macrophage Phenotypic Variability in Liver Disease

  • Chapter
  • First Online:
Molecules, Systems and Signaling in Liver Injury

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Macrophages are key effectors of innate immune response to pathogens and the initiation of inflammation, and they contribute to maintaining tissue homeostasis, tissue repair, and development (Wynn et al. 2013b). Macrophages also help shape the adaptive immune response through the presentation of foreign antigens and production of chemokines which facilitate the trafficking of adaptive immune cells to sights of inflammation and tissue damage (Newson et al. 2014). Macrophages are classified as either tissue resident (i.e., liver Kupffer cells, brain microglia, and alveolar macrophages in the lung) or recruited (monocyte−/bone marrow-derived macrophages). In mice, monocytes are subdivided based on their expression of Ly6C and CCR2. Ly6Chi CCR2+ monocytes rapidly infiltrate tissue upon injury (Karlmark et al. 2009). During acute or chronic liver injury, Ly6Chi monocyte-derived macrophages are the predominate macrophage subtype (Tacke and Randolph 2006; Karlmark et al. 2009). Ly6ClowCCR2 monocytes have been shown to exhibit a “patrolling” behavior and have been found crawling along the hepatic endothelium (Carlin et al. 2013). While monocyte-derived Ly6Chi initially exert tissue-destructive properties, they can differentiate into Ly6Clow monocyte-derived macrophages which promote tissue repair and resolution of inflammation (Dal-Secco et al. 2015). The human monocyte counterparts are classified as classical (CD14hiCD16), intermediate (CD14+CD16+), and nonclassical (CD14dimCD16+) (Ingersoll et al. 2010). Mouse and human monocytes share much similarity but differ in several aspects that must be taken into consideration when translating mouse and human studies. For instance, based on receptor expression CD16 and Ly6Chi, monocytes highly express CCR2, whereas CD16hi and Ly6Clo monocytes express high levels of CX3CR1 (Geissmann et al. 2003; Tacke et al. 2007). However, in regard to FcγR1 expression, mRNA and protein expression is conserved between CD16 and Ly6Chi monocytes, whereas human CD16+ monocytes lose FcγR1 surface protein expression which is retained on Ly6Clow monocytes (Ingersoll et al. 2010). Furthermore, Ly6Clow monocytes are more instrumental in phagocytosis, whereas in humans, CD16 monocytes are more phagocytic (Wildgruber et al. 2009; Tacke et al. 2006). Macrophages display a remarkable ability to alter their phenotype based on tissue microenvironmental cues such as hypoxia, cytokines, lipids, and exposure to dead cells. In acute and chronic liver diseases, various subsets of hepatic macrophages have been found to be involved in disease pathogenesis. In this review, we will summarize the development, heterogeneity, and plasticity of macrophages in response to microenvironmental stimuli in physiological and pathophysiological conditions of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AILI:

Acetaminophen-induced liver injury

ALA:

Amebic liver abscess

ALD:

Alcoholic liver disease

AMI:

Acute myocardial infarction

APAP:

Acetaminophen

Arg1:

Arginase 1

CCL2:

Chemokine (C-C motif) ligand 2

CCR2:

C-C chemokine receptor type 2

CGD:

Chronic granulomatous disease

COX-2:

Cyclooxygenase-2

CSF:

Colony-stimulating factor

CTGF:

Connective tissue growth factor

CX3CR1:

CX3C chemokine receptor 1

DHA:

Docosahexaenoic acid

EGFR:

Epidermal growth factor receptor

EPA:

Eicosapentaenoic acid

GFP:

Green fluorescent protein

GM-CSF:

Granulocyte/macrophage colony-stimulating factor

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HIF:

Hypoxia-inducible factor

IFNγ:

Interferon γ

IGF:

Insulin-like growth factor

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LTB4 :

Leukotriene B4

LPS:

Lipopolysaccharide

Ly6C:

Lymphocyte antigen 6 complex

SIRS:

Systemic inflammatory response syndrome

SREBP-1c:

Sterol regulatory element-binding protein 1c

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor α

NALD:

Non-alcoholic liver disease

NGF:

Nerve growth factor

NO:

Nitric oxide

Nr4a1:

Nuclear receptor subfamily 4 group A member 1

PDGF:

Platelet-derived growth factor

PGE2 :

Prostaglandin E2

PHD:

Prolyl hydroxylase

PPARα:

Peroxisome proliferator-activated receptor α

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SPM:

Specialized pro-resolving mediators

TGFβ:

Transforming growth factor β

Treg:

Regulatory T cell

VEGF:

Vascular endothelial growth factor

VHL:

Von Hippel-Lindau

References

  • Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG (1994) Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 20(2):453–460

    Article  CAS  PubMed  Google Scholar 

  • Bangoura G, Yang L, Huang G, Wang W (2004) Expression of HIF-2alpha/EPAS1 in hepatocellular carcinoma. World J Gastroenterol 4:525–530

    Article  Google Scholar 

  • Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN (2005) Molecular circuits of resolution: formation and actions of Resolvins and Protectins. J Immunol 174(7):4345–4355

    Article  CAS  PubMed  Google Scholar 

  • Baraona E, Lieber CS (1979) Effects of ethanol on lipid metabolism. J Lipid Res 20(3):289–315

    CAS  PubMed  Google Scholar 

  • Bergheim I, Weber S, Vos M, Krämer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC (2008) Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48(6):983–992

    Article  CAS  PubMed  Google Scholar 

  • Blériot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42(1):145–158

    Article  PubMed  CAS  Google Scholar 

  • Boltjes A, Movita D, Boonstra A, Woltman AM (2014) The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 61(3):660–671

    Article  CAS  PubMed  Google Scholar 

  • Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32(8):350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broering R, Wu J, Meng Z, Hilgard P, Lu M, Trippler M, Szczeponek A, Gerken G, Schlaak JF (2008) Toll-like receptor-stimulated non-parenchymal liver cells can Regulate hepatitis C virus replication. J Hepatol 48(6):914–922

    Article  CAS  PubMed  Google Scholar 

  • Burgio VL, Ballardini G, Artini M, Caratozzolo M, Bianchi FB, Levrero M (1998) Expression of co-stimulatory molecules by Kupffer cells in chronic hepatitis of hepatitis C virus etiology. Hepatology 27(6):1600–1606

    Article  CAS  PubMed  Google Scholar 

  • Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer Gene therapy. J Pathol 196(2):204–212

    Article  CAS  PubMed  Google Scholar 

  • Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages Biomed Res Int 2013:187204

    Google Scholar 

  • Carlin LM, Auffray C, Geissmann F (2013) Measuring intravascular migration of mouse Ly6Clow monocytes in vivo using Intravital microscopy. Curr Protoc Immunol 33:1–16

    Google Scholar 

  • Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C, Rosmorduc O (2002) Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35(5):1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Dalli J, Serhan C (2016) Macrophage proresolving mediators-the when and where. Microbiol Spectr 4(3):37–54

    Google Scholar 

  • Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CHY, Petri B, Ransohoff RM, Charo IF, Jenne CN, Kubes P (2015) A dynamic Spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med 212(4):447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver. Compr Physiol 3(2):785–797

    PubMed  PubMed Central  Google Scholar 

  • Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, Baeck C, Hittatiya K, Eulberg D, Luedde T, Kiessling F, Trautwein C, Lammers T, Tacke F (2014) CCL2-Dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63(12):1960–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(20):1976–1977

    Article  Google Scholar 

  • Enomoto N, Ikejima K, Bradford BU, Rivera CA, Kono H, Goto M, Yamashina S, Schemmer P, Kitamura T, Oide H, Takei Y, Hirose M, Shimizu H, Miyazaki A, Brenner DA, Sato N, Thurman RG (2000) Role of Kupffer cells and gut-derived endotoxins in alcoholic liver injury. J Gastroenterol Hepatol 15(s1):20–25

    Article  Google Scholar 

  • Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of Phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216

    CAS  PubMed  Google Scholar 

  • Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ (2003) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125(2):437–443

    Article  PubMed  Google Scholar 

  • Fernandez-Boyanapalli RF, Frasch SC, McPhillips K, Vandivier RW, Harry BL, Riches DWH, Henson PM, Bratton DL (2009) Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood 113(9):2047–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem D, Prince AM (2004) Hepatitis B virus infection — natural history and clinical consequences. N Engl J Med 350(11):1118–1129

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonoc S, Mazloon AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis TL-14. Nat Rev Immunol 14 VN-r(6):392–404

    Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobejishvili L, Barve S, Joshi-Barve S, Uriarte S, Song Z, McClain C (2006) Chronic ethanol-mediated decrease in cAMP primes macrophages to enhanced LPS-inducible NF-kappaB activity and TNF expression: relevance to alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 291(4):G681–G688

    Article  CAS  PubMed  Google Scholar 

  • Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR (2014) Tissue-resident macrophages originate from yolk-sac-derived Erythro-myeloid progenitors. Nature 518(7540):547–551

    Article  PubMed  CAS  Google Scholar 

  • Gordy C, Pua H, Sempowski GD, He YW (2011) Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117(2):618–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goren I, Allmann N, Yogev N, Schürmann C, Linke A, Holdener M, Waisman A, Pfeilschifter J, Frank S (2009) A transgenic mouse model of inducible macrophage depletion. Am J Pathol 175(1):132–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage - a Novel system to deliver Gene therapy to pathological hypoxia. Gene Ther 7(3):255–262

    Article  CAS  PubMed  Google Scholar 

  • Guilliams M, Kleer ID, Henri S, Post S, Vanhoutte L, Prijck SD, Deswarte K, Malissen B, Hammad H, Lambrecht BN (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210(10):1977–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC (2011) The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 12(8):778–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Grete M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804

    Article  CAS  PubMed  Google Scholar 

  • Helk E, Bernin H, Ernst T, Ittrich H, Jacobs T, Heeren J, Tacke F, Tannich E, Lotter H (2013) TNFalpha-mediated liver destruction by Kupffer cells and Ly6Chi monocytes during Entamoeba histolytica infection. PLoS Pathog 9(1):e1003096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgendorf I, Gerhardt LMS, Tan TC, Winter C, Holderried TAW, Chousterman BG, Iwamoto Y, Liao R, Sirlik A, Sherer-Crosbie M, Hedrick CC, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2014) Ly-6C high monocytes depend on nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res 114(10):1611–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K (2002) Hypoxia-inducible factor 1, a master transcription factor of cellular hypoxic Gene expression. J Anesth 16(2):150–159

    Article  PubMed  Google Scholar 

  • Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JK, Ng LG, Samokhvalov IM, Merad M, Ginhoux F (2012) Adult langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt MP, Cheng L, Ju C (2008) Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol 84(6):1410–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosomura N, Kono H, Tsuchiya M, Ishii K, Ogiku M, Matsuda M, Fujii H (2011) HCV-related proteins activate Kupffer cells isolated from human liver tissues. Dig Dis Sci 56(4):1057–1064

    Article  PubMed  Google Scholar 

  • Huynh MLN, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta 1 secretion and the resolution of inflammation. J Clin Investig 109(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L, Randolph GJ (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115(3):e10–e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to Novel therapeutic strategies. Cell Mol Immunol 13:1–12

    Google Scholar 

  • Ju C, McCoy JP, Chung CJ, Graf MLM, Pohl LR (2003) Tolerogenic role of Kupffer cells in allergic reactions. Chem Res Toxicol 16(12):1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Kamei T, Callery MP, Flye MW (1990) Kupffer cell blockade prevents induction of portal venous tolerance in rat cardiac allograft transplantation. J Surg Res 48(5):393–396

    Article  CAS  PubMed  Google Scholar 

  • Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C, Tacke F (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50(1):261–274

    Article  CAS  PubMed  Google Scholar 

  • Khakoo SI, Soni PN, Savage K, Brown D, Dhillon AP, Poulter LW, Dusheiko GM (1997) Lymphocyte and macrophage phenotypes in chronic hepatitis C infection. Correlation with disease activity. Am J Pathol 150(3):963–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnman N, Hultcrantz R, Barbu V, Rey C, Wendum D, Poupon R, Housset C (2000) PDGF-mediated Chemoattraction of hepatic Stellate cells by bile duct segments in Cholestatic liver injury. Lab Invest J Tech Methods Pathol 80(5):697–707

    Article  CAS  Google Scholar 

  • Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta Induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koop DR, Klopfenstein B, Limuro Y, Thurman RG (1997) Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with Intragastric alcohol despite the induction of CYP2E1. Mol Pharmacol 51(6):944–950

    CAS  PubMed  Google Scholar 

  • Korns D, Frasch C, Fernandez-Boyanapalli R, Henson PM, Bratton DL (2011) Modulation of macrophage efferocytosis in inflammation. Front Immunol 2:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauer GM, Walker BD (2001) Hepatitis C virus infection. N Engl J Med 345(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Leroux A, Ferrere G, Godie V, Cailleux F, Renoud ML, Gaudin F, Naveau S, Prevot S, Makhzami S, Perlemuter G, Cassard-Doulcier AM (2012) Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of Steatohepatitis. J Hepatol 57(1):141–149

    Article  CAS  PubMed  Google Scholar 

  • Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2(7):612–619

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Castaño AP, Nowlin BT, Lupher ML, Duffield JS (2009) Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol 183(10):6733–6743

    Article  CAS  PubMed  Google Scholar 

  • Lucas M, Stuart LM, Savill J, Lacy-Hulbert A (2003) Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J Immunol 171(5):2610–2615

    Article  CAS  PubMed  Google Scholar 

  • Ludovic A, Henry A, Poron F, Baba-Amer Y, Gherardi RK, van Rooijen N, Plonquet A, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  CAS  Google Scholar 

  • Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic Steatohepatitis. Trends Mol Med 14(2):72–81

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  PubMed  Google Scholar 

  • McGuinness PH, Painter D, Davies S, McCaughan GW (2000) Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particularly interleukin 18) in chronic hepatitis C infection. Gut 46(2):260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian MOR, Barhoumi T, Briet M, Paradis P, Schiffrin EL (2016) Deficiency of T-regulatory cells exaggerates angiotensin II-induced Microvascular injury by enhancing immune responses. J Hypertens 34(1):97–108

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Welch TP, Gonzalez FJ, Copple BL (2009) Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol 296(3):G582–G592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morias Y, Abels C, Laoui D, Van Overmeire E, Guilliams M, Schouppe E, Tacke F, deVries CJ, De Baetselier P, Beschin A (2015) Ly6C monocytes Regulate parasite-induced liver inflammation by inducing the differentiation of pathogenic Ly6C+ monocytes into macrophages. PLoS Pathog 11(5):e1004873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murdoc C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175(10):6257–6263

    Article  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeji P, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newson J, Stables M, Karra E, Arce-Vargas F, Quezada S, Motwani M, Mack M, Yona S, Audzevich T, Gilroy DW (2014) Resolution of acute inflammation bridges the gap between innate and adaptive Immunity. Blood 124(11):1748–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novo E, Povero D, Busletta C, Paternostro C, Di Bonzo LV, Cannito S, Compagnone A, Bandino A, Marra F, Colombatto S, David D, Pinzani M, Parola M (2012) The biphasic Nature of hypoxia-induced directional migration of activated human hepatic Stellate cells. J Pathol 226(4):588–597

    Article  CAS  PubMed  Google Scholar 

  • Oda T, Hirota K, Nishi K, Takabuchi S, Oda S, Yamada H, Arai T, Fukuda K, Kita T, Adachi T, Semenza GL, Nohara R (2006) Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am J Physiol Cell Physiol 291(1):C104–C113

    Article  CAS  PubMed  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman M, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Bio 2(7):423–427

    Article  CAS  Google Scholar 

  • Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  • Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P (2002) Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Investig 82(6):767–774

    Article  CAS  PubMed  Google Scholar 

  • Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA (2009) Human basophils and Eosinophils are the direct target leukocytes of the Novel IL-1 family member IL-33. Blood 113(7):1526–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, Kasmi K, Smith AM, Thompson RW, Cheever AW, Murray PJ, Wynn TA (2009) Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog 5(4):e100371

    Google Scholar 

  • Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA, Szabo G (2012) IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 122(10):3476–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran P, Pellicoro A, Vernon M, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon VK, Cappon A, Gordon-Walker TT, Williams MJ, Dunbar DR, Manning JR, van Rooijen N, Fallowfield JA, Forbes SJ, Iredale JP (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. PNAS 109(46):E3186–E3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadori G, Armbrust T (2001) Cytokines in the liver. Eur J Gastroenterol Hepatol 13:777–784

    Article  CAS  PubMed  Google Scholar 

  • Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M (2007) Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic Steatohepatitis. J Hepatol 47(4):571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, Sad S (2012) Type I interferon induces necroptosis in macrophages during infection with salmonella enterica serovar typhimurium TL-13. Nat Immunol 13(10):954–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio A, Guruceaga E, Vazquez-Chantada M, Sandoval J, Martinez-Cruz LA, Segura V, Sevilla JL, Podhorski A, Corrales FJ, Torres L, Rodriguez M, Aillet F, Ariz U, Arrieta JM, Caballeria J, Martin-Duce A, Lu SC, Martinez-Chantar ML, Mato JM (2007) Identification of a Gene-pathway associated with non-alcoholic steatohepatitis. J Hepatol 46(4):708–718

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K (2011) Progression of alcoholic and non-alcoholic Steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet 26(1):30–46

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yabuki K, Haba T, Maekawa T (1996) Role of Kupffer cells in the induction of tolerance after liver transplantation. J Surg Res 63(2):433–438

    Article  CAS  PubMed  Google Scholar 

  • Savill J (1997) Apoptosis in resolution of inflammation. J Leukoc Biol 61(4):375–380

    CAS  PubMed  Google Scholar 

  • Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner D, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7(8):345–340

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Ann Rev Pathol 9:47–71

    Article  CAS  Google Scholar 

  • Serbina NV, Shi C, Pamer EG (2012) Monocyte-mediated immune defense against Murine Listeria monocytogenes infection. Adv Immunol 113:119–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6(12):1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Mukherjee A, Ray R, Ray RB (2013) Hepatitis C virus Induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages. J Virol 87(22):12284–12290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72(21):4111–4126

    Article  CAS  PubMed  Google Scholar 

  • Steevels TAM, Meyaard L (2011) Immune inhibitory receptors: essential regulators of phagocyte function. Eur J Immunol 41(3):575–587

    Article  CAS  PubMed  Google Scholar 

  • Stutchfield BM, Antoine DJ, Mackinnon AC, Gow DJ, Bain CC, Hawley CA, Hughes M, Francis B, Wojtacha D, Man TY, Dear JW, Dever LR, Mowat AM, Pollard JW, Park BK, Jenkins SJ, Simpson KJ, Hume DA, Wigmore SJ, Forbes SJ (2015) CSF1 restores innate Immunity following liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 149(7):1896–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libber P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211(6–8):609–618

    Article  CAS  PubMed  Google Scholar 

  • Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M, Randolph GJ (2006) Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med 203(3):583–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117(1):185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A, Johnson RS (2010) Differential activation and antagonistic function of HIFalpha isoforms in macrophages are essential for NO homeostasis. Genes Dev 24(5):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF- 1alpha and HIF-2alpha in normal human tissues, cancers, and tumor- associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-Abellán A, Martínez-Esparza M, Ruiz-Alcaraz AJ, Hernández-Caselles T, Martínez-Pascual C, Miras-López M, Such J, Francés R, García-Peñarrubia P (2012) The peritoneal macrophage inflammatory profile in cirrhosis depends on the alcoholic or hepatitis C viral etiology and is related to ERK phosphorylation. BMC Immunol 13:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tu Z, Pierce RH, Kurtis J, Kuroki Y, Crispe IN, Orloff MS (2010) Hepatitis C virus core protein subverts the antiviral activities of human Kupffer cells. Gastroenterology 138(1):305–314

    Article  CAS  PubMed  Google Scholar 

  • Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129(6):1673–1682

    Article  PubMed  Google Scholar 

  • Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L (2013) Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration. J Immunol 191(11):5695–5701

    Article  CAS  PubMed  Google Scholar 

  • Wallace K, Burt AD, Wright MC (2008) Liver Fibrosis. Biochem J 411(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, Lotersztajn S, Pavoine C (2014) M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59(1):130–142

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Kubes P (2016) A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165(3):668–678

    Article  CAS  PubMed  Google Scholar 

  • Wang M, You Q, Lor K, Chen F, Gao B, Ju C (2014) Chronic alcohol ingestion modulates hepatic macrophage populations and functions in mice. J Leuko Biol 96(4):657–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weirather J, Hofmann UDW, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S (2014) Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 115(1):55–67

    Article  CAS  PubMed  Google Scholar 

  • Wenge RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16(10):1151–1162

    Article  Google Scholar 

  • Wieckowska A, Zein NN, Yerian LM, Lopez R, McCullough AJ, Feldstein AE (2006) In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Wildgruber M, Lee H, Chudnovskiy A, Yoon TJ, Etzrodt M, Pittet MJ, Nahrendorf M, Croce K, Libby P, Weissleder R, Swirski FK (2009) Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS One 4(5):e5663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson MW, Elnekave E, Mentink-Kane MM, Hodges MG, Pesce JT, Ramalingam TR, Thompson RW, Kamanaka M, Flavell A, Keane-Myers A, Cheever AW, Wynn TA (2007) IL-13Ralpha2 and IL-10 Coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. J Clin Invest 117(10):2941–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri C, Horuzsko A (2012) The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 72(16):3977–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA, Yugandhar VG, Clark M (2013a) Cellular and molecular mechanisms of fibrosis. J Pathol 46(2):26–32

    Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013b) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharim A, Hume DA, Parlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91

    Article  CAS  PubMed  Google Scholar 

  • You M, Fischer M, Deeg MA, Crabb DW (2002) Ethanol Induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 277(32):29342–29347

    Article  CAS  PubMed  Google Scholar 

  • You Q, Cheng L, Kedl RM, Ju C (2008) Mechanism of T cell tolerance induction by Murine hepatic Kupffer cells. Hepatology 48(3):978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Q, Holt M, Yin H, Li G, Hu CJ, Ju C (2013) Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol 86(6):836–843

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Rao S, Reddy JK (2003) Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Curr Mol Med 3(6):561–572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Bagby GJ, Stoltz D, Oliver P, Schwarzenberger PO, Kolls JK (2001) Prolonged ethanol treatment enhances lipopolysaccharide/phorbol myristate acetate-induced tumor necrosis factor-alpha production in human monocytic cells. Alcohol Clin Exp Res 25(3):444–449

    CAS  PubMed  Google Scholar 

  • Zhu H, Liu C (2003) Interleukin-1 inhibits hepatitis C virus subgenomic RNA replication by activation of extracellular regulated kinase pathway. J Virol 77(9):5493–5498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Shang X, Terada N, Liu C (2004) STAT3 induces anti-hepatitis C viral activity in liver cells. Biochem Biophys Res Commun 324(2):518–528

    Article  CAS  PubMed  Google Scholar 

  • Zigmond E, Samia-Grinberg S, Mr P-C, Brazowski E, Shibolet O, Halpern Z, Varol C (2014) Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J Immunol 193(1):344–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Marentette, J., Ju, C. (2017). The Switch: Mechanisms Governing Macrophage Phenotypic Variability in Liver Disease. In: Ding, WX., Yin, XM. (eds) Molecules, Systems and Signaling in Liver Injury. Cell Death in Biology and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-58106-4_4

Download citation

Publish with us

Policies and ethics