Skip to main content

Ventricular Assist Device as Bridge-to-Transplant

  • Reference work entry
  • First Online:
Contemporary Heart Transplantation

Part of the book series: Organ and Tissue Transplantation ((OTT))

  • 500 Accesses

Abstract

Due to the limited donor supply and long wait times for heart transplantation, the use of a ventricular assist device as a bridge to heart transplantation is increasing. With the development of the continuous flow device, there has been improved mechanical durability with a resultant decrease in waitlist mortality for patient who are waiting for heart transplantation. When selecting patients for potential assist device therapy, it is important to consider heart failure severity for timing of device implantation, right ventricular function, and ability to tolerate anticoagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Kindi SG, Farhoud M, Zacharias M et al (2017) Left ventricular assist devices or inotropes for decreasing pulmonary vascular resistance in patients with pulmonary hypertension listed for heart transplantation. J Card Fail 23(3):209–215

    Article  PubMed  Google Scholar 

  • Atluri P, Fairman AS, MacArthur JW et al (2013) Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg 28(6):770–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellavia D, Iacovoni A, Scardulla C et al (2017) Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail 19(7):926–946

    Article  CAS  PubMed  Google Scholar 

  • Birati EY, Hanff TC, Maldonado D, et al (2018) Predicting long term outcome in patients treated with continuous flow left ventricular assist device: the Penn-Columbia risk score. J Am Heart Assoc 7(6):1–6

    Google Scholar 

  • Blume ED, VanderPluym C, Lorts A et al (2018) Second annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: pre-implant characteristics and outcomes. J Heart Lung Transplant 37(1):38–45

    Article  PubMed  Google Scholar 

  • Chauhan D, Okoh AK, Fugar S et al (2017a) Impact of left-ventricular assist device-related complications on posttransplant graft survival. Ann Thorac Surg 104(6):1947–1952

    Article  PubMed  Google Scholar 

  • Chauhan D, Okoh AK, Haik N et al (2017b) The effect of continuous-flow left ventricular assist device duration on postoperative outcomes. Ann Thorac Surg 104(6):1933–1938

    Article  PubMed  Google Scholar 

  • Ciarka A, Edwards L, Nilsson J, Stehlik J, Lund LH (2017) Trends in the use of mechanical circulatory support as a bridge to heart transplantation across different age groups. Int J Cardiol 231:225–227

    Article  PubMed  Google Scholar 

  • Cogswell R, Duval S, John R (2018) Left ventricular assist device is protective against cardiac transplant delisting for medical unsuitability. Int J Cardiol 268:51–54

    Article  PubMed  Google Scholar 

  • Colvin M, Smith JM, Hadley N et al (2019) OPTN/SRTR 2017 annual data report: heart. Am J Transplant 19(Suppl 2):323–403

    Article  PubMed  Google Scholar 

  • Dardas TF (2018) Impact of mechanical circulatory support on posttransplant outcomes. Cardiol Clin 36(4):551–560

    Article  PubMed  Google Scholar 

  • DeFilippis EM, Vaduganathan M, Machado S, Stehlik J, Mehra MR (2019) Emerging trends in financing of adult heart transplantation in the United States. JACC: Heart Fail 7(1):56–62

    Google Scholar 

  • Dowling RD, Jones JW, Carroll MS, Gray LA Jr (1998) Use of intravenous immunoglobulin in sensitized LVAD recipients. Transplant Proc 30(4):1110–1111

    Article  CAS  PubMed  Google Scholar 

  • Fraser CD 3rd, Zhou X, Magruder JT et al (2019) Outcomes after heart transplantation in sensitized patients bridged with ventricular assist devices. J Card Surg 34(6):474–481

    Article  PubMed  Google Scholar 

  • Gelow JM, Song HK, Weiss JB, Mudd JO, Broberg CS (2013) Organ allocation in adults with congenital heart disease listed for heart transplant: impact of ventricular assist devices. J Heart Lung Transplant 32(11):1059–1064

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant AD, Smedira NG, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 60(6):521–528

    Article  PubMed  Google Scholar 

  • Grosman-Rimon L, Ajrawat P, Lioe J et al (2019) Increases in serum autoantibodies after left ventricular assist device implantation. J Card Fail 25(4):301–306

    Article  PubMed  Google Scholar 

  • Healy AH, Baird BC, Drakos SG, Stehlik J, Selzman CH (2013) Impact of ventricular assist device complications on posttransplant survival: an analysis of the United network of organ sharing database. Ann Thorac Surg 95(3):870–875

    Article  PubMed  Google Scholar 

  • John R, Pagani FD, Naka Y et al (2010) Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg 140(1):174–181

    Article  PubMed  Google Scholar 

  • Joyce DL, Southard RE, Torre-Amione G, Noon GP, Land GA, Loebe M (2005) Impact of left ventricular assist device (LVAD)-mediated humoral sensitization on post-transplant outcomes. J Heart Lung Transplant 24(12):2054–2059

    Article  PubMed  Google Scholar 

  • Kalogeropoulos AP, Vega JD, Smith AL, Georgiopoulou VV (2011) Pulmonary hypertension and right ventricular function in advanced heart failure. Congest Heart Fail 17(4):189–198

    Article  PubMed  Google Scholar 

  • Kalogeropoulos AP, Kelkar A, Weinberger JF et al (2015) Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant 34(12):1595–1603

    Article  PubMed  Google Scholar 

  • Khush KK, Cherikh WS, Chambers DC et al (2018) The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult heart transplantation report-2014;2018; Focus theme: multiorgan transplantation. J Heart Lung Transplant 37(10):1155–1168

    Article  PubMed  Google Scholar 

  • Kirklin JK, Pagani FD, Kormos RL et al (2017) Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 36(10):1080–1086

    Article  PubMed  Google Scholar 

  • Ko BS, Drakos S, Kfoury AG et al (2016) Immunologic effects of continuous-flow left ventricular assist devices before and after heart transplant. J Heart Lung Transplant 35(8):1024–1030

    Article  PubMed  Google Scholar 

  • Kormos RL, Teuteberg JJ, Pagani FD et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139(5):1316–1324

    Article  PubMed  Google Scholar 

  • Krishnamurthy Y, Cooper LB, Lu D et al (2016) Trends and outcomes of patients with adult congenital heart disease and pulmonary hypertension listed for orthotopic heart transplantation in the United States. J Heart Lung Transplant 35(5):619–624

    Article  PubMed  Google Scholar 

  • Lampert BC, Teuteberg JJ (2015) Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant 34(9):1123–1130

    Article  PubMed  Google Scholar 

  • Li S, Beckman JA, Welch NG et al (2019) Accuracy of Doppler blood pressure measurement in continuous-flow left ventricular assist device patients. ESC Heart Fail 6(4):793–798

    Article  PubMed  PubMed Central  Google Scholar 

  • Massad MG, Cook DJ, Schmitt SK et al (1997) Factors influencing HLA sensitization in implantable LVAD recipients. Ann Thorac Surg 64(4):1120–1125

    Article  CAS  PubMed  Google Scholar 

  • McGee E Jr, Danter M, Strueber M et al (2019) Evaluation of a lateral thoracotomy implant approach for a centrifugal-flow left ventricular assist device: the LATERAL clinical trial. J Heart Lung Transplant 38(4):344–351

    Article  PubMed  Google Scholar 

  • Mehra MR, Uriel N, Naka Y et al (2019) A fully magnetically levitated left ventricular assist device – final report. N Engl J Med 380(17):1618–1627

    Article  PubMed  Google Scholar 

  • Meyer AL, Malehsa D, Bara C et al (2010) Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail 3(6):675–681

    Article  PubMed  Google Scholar 

  • Mikus E, Stepanenko A, Krabatsch T et al (2011) Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg 40(4):971–977

    PubMed  Google Scholar 

  • Milano CA, Rogers JG, Tatooles AJ et al (2018) HVAD: the ENDURANCE supplemental trial. JACC Heart Fail 6(9):792–802

    Article  PubMed  Google Scholar 

  • Moayedifar R, Zuckermann A, Aliabadi-Zuckermann A et al (2018) Long-term heart transplant outcomes after lowering fixed pulmonary hypertension using left ventricular assist devices. Eur J Cardiothorac Surg 54(6):1116–1121

    Article  PubMed  Google Scholar 

  • Nascimbene A, Neelamegham S, Frazier OH, Moake JL, Dong JF (2016) Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 127(25):3133–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen VP, Givens RC, Cheng RK et al (2016) Effect of regional competition on heart transplant waiting list outcomes. J Heart Lung Transplant 35(8):986–994

    Article  PubMed  Google Scholar 

  • Pagani FD, Aaronson KD, Dyke DB, Wright S, Swaniker F, Bartlett RH (2000) Assessment of an extracorporeal life support to LVAD bridge to heart transplant strategy. Ann Thorac Surg 70(6):1977–1985

    Article  CAS  PubMed  Google Scholar 

  • Patlolla B, Beygui R, Haddad F (2013) Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol 28(2):223–233

    Article  PubMed  Google Scholar 

  • Rogers JG, Pagani FD, Tatooles AJ et al (2017) Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376(5):451–460

    Article  PubMed  Google Scholar 

  • Sabashnikov A, Mohite PN, Zych B et al (2014) Outcomes and predictors of early mortality after continuous-flow left ventricular assist device implantation as a bridge to transplantation. ASAIO J 60(2):162–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumer EM, Gallo M, Rogers MP et al (2018) The development of pulmonary hypertension results in decreased post-transplant survival. ASAIO J 64(4):508–514

    Article  PubMed  Google Scholar 

  • Seco M, Zhao DF, Byrom MJ et al (2017) Long-term prognosis and cost-effectiveness of left ventricular assist device as bridge to transplantation: a systematic review. Int J Cardiol 235:22–32

    Article  PubMed  Google Scholar 

  • Serfas JD, Patel PA, Krasuski RA (2018) Heart transplantation and mechanical circulatory support in adults with congenital heart disease. Curr Cardiol Rep 20(10):81

    Article  PubMed  Google Scholar 

  • Shah P, Tantry US, Bliden KP, Gurbel PA (2017) Bleeding and thrombosis associated with ventricular assist device therapy. J Heart Lung Transplant 36(11):1164–1173

    Article  PubMed  Google Scholar 

  • Shankar N, Daly R, Geske J et al (2013) LVAD implant as a bridge to heart transplantation is associated with allosensitization as measured by single antigen bead assay. Transplantation 96(3):324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieg AC, Moretz JD, Horn E, Jennings DL (2017) Pharmacotherapeutic management of gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices. Pharmacotherapy 37(11):1432–1448

    Article  PubMed  Google Scholar 

  • Slaughter MS, Pagani FD, McGee EC et al (2013) HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant 32(7):675–683

    Article  PubMed  Google Scholar 

  • Sparrow CT, LaRue SJ, Schilling JD (2018) Intersection of pulmonary hypertension and right ventricular dysfunction in patients on left ventricular assist device support: is there a role for pulmonary vasodilators? Circ Heart Fail 11(1):e004255

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffen RJ, Blackstone EH, Smedira NG et al (2017) Optimal timing of heart transplant after heartmate II left ventricular assist device implantation. Ann Thorac Surg 104(5):1569–1576

    Article  PubMed  Google Scholar 

  • Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK (2018) Tumor necrosis factor-alpha levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transplant 37(1):107–115

    Article  PubMed  Google Scholar 

  • Taghavi S, Jayarajan SN, Komaroff E, Mangi AA (2016) Right ventricular assist device results in worse post-transplant survival. J Heart Lung Transplant 35(2):236–241

    Article  PubMed  Google Scholar 

  • Takeda K, Takayama H, Kalesan B et al (2015) Outcome of cardiac transplantation in patients requiring prolonged continuous-flow left ventricular assist device support. J Heart Lung Transplant 34(1):89–99

    Article  PubMed  Google Scholar 

  • Truby LK, Garan AR, Givens RC et al (2018) Ventricular assist device utilization in heart transplant candidates: nationwide variability and impact on waitlist outcomes. Circ Heart Fail 11(4):e004586

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner KR (2019) Right ventricular failure after left ventricular assist device placement-the beginning of the end or just another challenge? J Cardiothorac Vasc Anesth 33(4):1105–1121

    Article  PubMed  Google Scholar 

  • Uriel N, Jorde UP, Woo Pak S et al (2013) Impact of long term left ventricular assist device therapy on donor allocation in cardiac transplantation. J Heart Lung Transplant 32(2):188–195

    Article  PubMed  PubMed Central  Google Scholar 

  • VanderPluym CJ, Cedars A, Eghtesady P et al (2018) Outcomes following implantation of mechanical circulatory support in adults with congenital heart disease: an analysis of the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). J Heart Lung Transplant 37(1):89–99

    Article  PubMed  Google Scholar 

  • Vivo RP, Cordero-Reyes AM, Qamar U et al (2013) Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant 32(8):792–799

    Article  PubMed  Google Scholar 

  • Wever-Pinzon O, Drakos SG, Kfoury AG et al (2013) Morbidity and mortality in heart transplant candidates supported with mechanical circulatory support: is reappraisal of the current United network for organ sharing thoracic organ allocation policy justified? Circulation 127(4):452–462

    Article  PubMed  Google Scholar 

  • Wever-Pinzon O, Naka Y, Garan AR et al (2016) National trends and outcomes in device-related thromboembolic complications and malfunction among heart transplant candidates supported with continuous-flow left ventricular assist devices in the United States. J Heart Lung Transplant 35(7):884–892

    Article  PubMed  Google Scholar 

  • Williams ML, Trivedi JR, McCants KC et al (2011) Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann Thorac Surg 91(5):1330–1333; discussion 1333–1334

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidang Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nguyen, V., Li, S. (2020). Ventricular Assist Device as Bridge-to-Transplant. In: Bogar, L., Stempien-Otero, A. (eds) Contemporary Heart Transplantation. Organ and Tissue Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-58054-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58054-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58053-1

  • Online ISBN: 978-3-319-58054-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics