Skip to main content

Basic Electrophysiology

  • Chapter
  • First Online:
Cardiac Arrhythmias, Pacing and Sudden Death

Part of the book series: Cardiovascular Medicine ((CVM))

  • 1670 Accesses

Abstract

Basic electrophysiology is a rapidly evolving field, rich in detail. This introductory chapter provides a succinct and essential overview of key concepts in basic electrophysiology covering: The stages of the cardiac action potential and their generation; Excitation-contraction coupling; Cardiac automaticity; The cardiac conduction system and Arrhythmogenesis, including abnormal automaticity, afterdepolarizations, triggered activity and re-entry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grant A, Carboni M, Antzelevitch C, Burashnikov A. Cardiac arrhythmia: mechanisms, diagnosis, and management. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2001.

    Google Scholar 

  2. MacLeod K. An essential introduction to cardiac electrophysiology. 1st ed. London: Imperial College Press; 2014.

    Book  Google Scholar 

  3. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185–94.

    Article  PubMed  Google Scholar 

  4. Zipes D, Jalife J. Cardiac electrophysiology: from cell to bedside. 6th ed. Philadelphia: Elsevier; 2014.

    Google Scholar 

  5. Papadatos GA, Wallerstein PM, Head CE, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci U S A. 2002;99(9):6210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Antzelevitch C, Yan GX. J-wave syndromes: Brugada and early repolarization syndromes. Heart Rhythm. 2015;12(8):1852–66.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whalley DW, Wendt DJ, Grant AO. Basic concepts in cellular cardiac electrophysiology: part I: ion channels, membrane currents, and the action potential. Pacing Clin Electrophysiol. 1995;18(8):1556–74.

    Article  CAS  PubMed  Google Scholar 

  8. Huang FD, Chen J, Lin M, Keating MT, Sanguinetti MC. Long-QT syndrome-associated missense mutations in the pore helix of the HERG potassium channel. Circulation. 2001;104(9):1071–5.

    Article  CAS  PubMed  Google Scholar 

  9. Lupoglazoff JM, Denjoy I, Berthet M, et al. Notched T waves on holter recordings enhance detection of patients with LQt2 (HERG) mutations. Circulation. 2001;103(8):1095–101.

    Article  CAS  PubMed  Google Scholar 

  10. Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  11. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.

    Article  PubMed  Google Scholar 

  12. Pfeiffer ER, Tangney JR, Omens JH, McCulloch AD. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. J Biomech Eng. 2014;136(2):021007.

    Article  PubMed  Google Scholar 

  13. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi T, Solaro RJ. Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol. 2005;67:39–67.

    Article  CAS  PubMed  Google Scholar 

  15. Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000;80(2):853–924.

    CAS  PubMed  Google Scholar 

  16. Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns. 2003;3(6):777–83.

    Article  CAS  PubMed  Google Scholar 

  17. Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin. 2016;37(1):82–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res. 2006;53(5):399–406.

    Article  CAS  PubMed  Google Scholar 

  19. Hagiwara N, Irisawa H, Kasanuki H, Hosoda S. Background current in sino-atrial node cells of the rabbit heart. J Physiol. 1992;448:53–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995;374(6518):135–41.

    Article  CAS  PubMed  Google Scholar 

  21. Wickman K, Krapivinsky G, Corey S, et al. Structure, G protein activation, and functional relevance of the cardiac G protein-gated K+ channel, IKACh. Ann N Y Acad Sci. 1999;868:386–98.

    Article  CAS  PubMed  Google Scholar 

  22. DiFrancesco D, Ducouret P, Robinson RB. Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science. 1989;243(4891):669–71.

    Article  CAS  PubMed  Google Scholar 

  23. Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E. Pharmacology of cardiac potassium channels. Cardiovasc Res. 2004;62(1):9–33.

    Article  CAS  PubMed  Google Scholar 

  24. Stern MD, Capogrossi MC, Lakatta EG. Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells: mechanisms and consequences. Cell Calcium. 1988;9(5–6):247–56.

    Article  CAS  PubMed  Google Scholar 

  25. Bogdanov KY, Vinogradova TM, Lakatta EG. Sinoatrial nodal cell ryanodine receptor and na(+)-ca(2+) exchanger: Molecular partners in pacemaker regulation. Circ Res. 2001;88(12):1254–8.

    Article  CAS  PubMed  Google Scholar 

  26. van Campenhout MJ, Yaksh A, Kik C, et al. Bachmann’s bundle: a key player in the development of atrial fibrillation? Circ Arrhythm Electrophysiol. 2013;6(5):1041–6.

    Article  PubMed  Google Scholar 

  27. Dobrzynski H, Anderson RH, Atkinson A, et al. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther. 2013;139(2):260–88.

    Article  CAS  PubMed  Google Scholar 

  28. Hancox J, Yuill K, Mitcheson J, Convery M. Progress and gaps in un- derstanding the electrophysiological properties of morphologically normal cells from the cardiac atrioventricular node. Int J Bifurcat Chaos. 2003;13:3675–91.

    Article  Google Scholar 

  29. Greener ID, Tellez JO, Dobrzynski H, et al. Ion channel transcript expression at the rabbit atrioventricular conduction axis. Circ Arrhythm Electrophysiol. 2009;2(3):305–15.

    Article  CAS  PubMed  Google Scholar 

  30. Greener ID, Monfredi O, Inada S, et al. Molecular architecture of the human specialised atrioventricular conduction axis. J Mol Cell Cardiol. 2011;50(4):642–51.

    Article  CAS  PubMed  Google Scholar 

  31. Li J. Alterations in cell adhesion proteins and cardiomyopathy. World J Cardiol. 2014;6(5):304–13.

    PubMed  PubMed Central  Google Scholar 

  32. Meens MJ, Kwak BR, Duffy HS. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci. 2015;72(15):2779–92.

    Article  CAS  PubMed  Google Scholar 

  33. Desplantez T, McCain ML, Beauchamp P, et al. Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc Res. 2012;94(1):58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sato PY, Musa H, Coombs W, et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res. 2009;105(6):523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shu J, Zhou J, Patel C, Yan GX. Pharmacotherapy of cardiac arrhythmias—basic science for clinicians. Pacing Clin Electrophysiol. 2009;32(11):1454–65.

    Article  PubMed  Google Scholar 

  36. Hirano Y, Moscucci A, January CT. Direct measurement of L-type Ca2+ window current in heart cells. Circ Res. 1992;70(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  37. January CT, Riddle JM. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res. 1989;64(5):977–90.

    Article  CAS  PubMed  Google Scholar 

  38. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425–56.

    Article  CAS  PubMed  Google Scholar 

  39. Bers DM. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol. 2014;76:107–27.

    Article  CAS  PubMed  Google Scholar 

  40. Comtois P, Kneller J, Nattel S. Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace. 2005;7(Suppl 2):10–20.

    Article  PubMed  Google Scholar 

  41. Allessie MA, Bonke FI, Schopman FJ. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. the “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  42. Rensma PL, Allessie MA, Lammers WJ, Bonke FI, Schalij MJ. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res. 1988;62(2):395–410.

    Article  CAS  PubMed  Google Scholar 

  43. Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  44. Aguilar M, Nattel S. The past, present, and potential future of sodium channel block as an atrial fibrillation suppressing strategy. J Cardiovasc Pharmacol. 2015;66(5):432–40.

    Article  CAS  PubMed  Google Scholar 

  45. Kneller J, Kalifa J, Zou R, et al. Mechanisms of atrial fibrillation termination by pure sodium channel blockade in an ionically-realistic mathematical model. Circ Res. 2005;96(5):e35–47.

    Article  CAS  PubMed  Google Scholar 

  46. Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 2003;108(6):668–71.

    Article  PubMed  Google Scholar 

  47. Cuculich PS, Wang Y, Lindsay BD, et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122(14):1364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol. 2012;60(7):628–36.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haissaguerre M, Hocini M, Denis A, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Charles Pearman from The University of Manchester for kindly providing the material used to make Fig. 1.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria M. Robinson M.B.Ch.B. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Robinson, V.M., Nattel, S. (2017). Basic Electrophysiology. In: Kowey, P., Piccini, J., Naccarelli, G., Reiffel, J. (eds) Cardiac Arrhythmias, Pacing and Sudden Death. Cardiovascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-58000-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58000-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57998-6

  • Online ISBN: 978-3-319-58000-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics