Skip to main content

Immunological Disorders: Regulation of Ca2+ Signaling in T Lymphocytes

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 993))

Abstract

Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A (1999) Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285:2129–2133

    Article  CAS  PubMed  Google Scholar 

  • Arron JR, Winslow MM, Polleri A, Chang CP, Wu H, Gao X, Neilson JR, Chen L, Heit JJ, Kim SK, Yamasaki N, Miyakawa T, Francke U, Graef IA, Crabtree GR (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441:595–600

    Article  CAS  PubMed  Google Scholar 

  • Badou A, Jha MK, Matza D, Flavell RA (2013) Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front Immunol 4:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baine I, Abe BT, Macian F (2009) Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 231:225–240

    Article  CAS  PubMed  Google Scholar 

  • Balagopalan L, Coussens NP, Sherman E, Samelson LE, Sommers CL (2010) The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb Perspect Biol 2:a005512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barr VA, Bernot KM, Srikanth S, Gwack Y, Balagopalan L, Regan CK, Helman DJ, Sommers CL, Oh-Hora M, Rao A, Samelson LE (2008) Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol Biol Cell 19:2802–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budd RC (2001) Activation-induced cell death. Curr Opin Immunol 13:356–362

    Article  CAS  PubMed  Google Scholar 

  • Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco S, Meyer T (2011) STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 80:973–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christel C, Lee A (2012) Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta 1820:1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322

    Article  CAS  PubMed  Google Scholar 

  • Coudronniere N, Villalba M, Englund N, Altman A (2000) NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci USA 97:3394–3399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desvignes L, Weidinger C, Shaw P, Vaeth M, Ribierre T, Liu M, Fergus T, Kozhaya L, McVoy L, Unutmaz D, Ernst JD, Feske S (2015) STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection. J Clin Invest 125:2347–2362

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolmetsch RE, Lewis RS (1994) Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J Gen Physiol 103:365–388

    Article  CAS  PubMed  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  CAS  PubMed  Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  • Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XH (2009) Molecular evolution of the junctophilin gene family. Physiol Genomics 37:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan PG, Rao A (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441:646–650

    Article  CAS  PubMed  Google Scholar 

  • Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A (2007a) Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42:145–156

    Article  CAS  PubMed  Google Scholar 

  • Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007b) Biochemical and functional characterization of Orai proteins. J Biol Chem 282:16232–16243

    Article  CAS  PubMed  Google Scholar 

  • Gwack Y, Srikanth S, Oh-Hora M, Hogan PG, Lamperti ED, Yamashita M, Gelinas C, Neems DS, Sasaki Y, Feske S, Prakriya M, Rajewsky K, Rao A (2008) Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 28:5209–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartzell CA, Jankowska KI, Burkhardt JK, Lewis RS (2016) Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. Elife 21:5

    Google Scholar 

  • Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P (2002) Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16:759–767

    Article  CAS  PubMed  Google Scholar 

  • Hildeman D, Jorgensen T, Kappler J, Marrack P (2007) Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol 19:516–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge MR, Ranger AM, Charles de la Brousse F, Hoey T, Grusby MJ, Glimcher LH (1996) Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4:397–405

    Article  CAS  PubMed  Google Scholar 

  • Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  CAS  PubMed  Google Scholar 

  • Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro K, Green T, Rapley J, Wachtel H, Giallourakis C, Landry A, Cao Z, Lu N, Takafumi A, Goto H, Daly MJ, Xavier RJ (2006) Ca2+/calmodulin-dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation. Mol Cell Biol 26:5497–5508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro K, Ando T, Goto H, Xavier R (2007) Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II. Mol Immunol 44:2095–2100

    Article  CAS  PubMed  Google Scholar 

  • Jha A, Ahuja M, Maleth J, Moreno CM, Yuan JP, Kim MS, Muallem S (2013) The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. J Cell Biol 202:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha A, Singh AK, Weissgerber P, Freichel M, Flockerzi V, Flavell RA, Jha MK (2015) Essential roles for Cavbeta2 and Cav1 channels in thymocyte development and T cell homeostasis. Sci Signal 8:ra103

    Article  PubMed  CAS  Google Scholar 

  • Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X, Zhang SL, Zhong L, Huang Y, Dong MQ, Walker CL, Hogan PG, Wang Y, Zhou Y (2015) Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nat Cell Biol 17:1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Nelson C, Parekh AB (2011) Selective activation of the transcription factor NFAT1 by calcium microdomains near Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 286:14795–14803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann U, Shaw PJ, Kozhaya L, Subramanian R, Gaida K, Unutmaz D, McBride HJ, Feske S (2016) Selective ORAI1 inhibition ameliorates autoimmune central nervous system inflammation by suppressing effector but not regulatory T cell function. J Immunol 196:573–585

    Article  CAS  PubMed  Google Scholar 

  • Kim KD, Srikanth S, Yee MK, Mock DC, Lawson GW, Gwack Y (2011) ORAI1 deficiency impairs activated T cell death and enhances T cell survival. J Immunol 187:3620–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KD, Srikanth S, Tan YV, Yee MK, Jew M, Damoiseaux R, Jung ME, Shimizu S, An DS, Ribalet B, Waschek JA, Gwack Y (2014) Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J Immunol 192:110–122

    Article  CAS  PubMed  Google Scholar 

  • Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  CAS  PubMed  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Stotz SC, Manasian Y, Clapham DE (2011) POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proc Natl Acad Sci USA 108:19234–19239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92:689–737

    Article  CAS  PubMed  Google Scholar 

  • Lee KP, Yuan JP, Zeng W, So I, Worley PF, Muallem S (2009) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci USA 106:14687–14692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis RS (2011) Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol 3(12):a003970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1:99–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Miao Y, Dani A, Vig M (2016) alpha-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels. Mol Biol Cell 27(16):2542–2553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin X, O’Mahony A, Mu Y, Geleziunas R, Greene WC (2000) Protein kinase C-theta participates in NF-kappaB activation induced by CD3-CD28 costimulation through selective activation of IkappaB kinase beta. Mol Cell Biol 20:2933–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioudyno MI, Kozak JA, Penna A, Safrina O, Zhang SL, Sen D, Roos J, Stauderman KA, Cahalan MD (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105:2011–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ (2011) The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 12:1063–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Berry CT, Ruthel G, Madara JJ, MacGillivray K, Gray CM, Madge LA, McCorkell KA, Beiting DP, Hershberg U, May MJ, Freedman BD (2016) T cell receptor-induced Nuclear Factor kappaB (NF-kappaB) signaling and transcriptional activation are regulated by STIM1- and Orai1-mediated calcium entry. J Biol Chem 291:8440–8452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, McCarl CA, Khalil S, Luthy K, Feske S (2010) T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. Eur J Immunol 40:3028–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484

    Article  CAS  PubMed  Google Scholar 

  • Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A (2002) Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109:719–731

    Article  CAS  PubMed  Google Scholar 

  • Marrack P, Kappler J (2004) Control of T cell viability. Annu Rev Immunol 22:765–787

    Article  CAS  PubMed  Google Scholar 

  • Marsden VS, Strasser A (2003) Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu Rev Immunol 21:71–105

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Fujii Y, Baba A, Hikida M, Kurosaki T, Baba Y (2011) The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34:703–714

    Article  CAS  PubMed  Google Scholar 

  • McCarl CA, Khalil S, Ma J, Oh-hora M, Yamashita M, Roether J, Kawasaki T, Jairaman A, Sasaki Y, Prakriya M, Feske S (2010) Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. J Immunol 185:5845–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally BA, Somasundaram A, Yamashita M, Prakriya M (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482:241–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Miner C, Zhang L, Hanson PI, Dani A, Vig M (2013) An essential and NSF independent role for alpha-SNAP in store-operated calcium entry. Elife 2:e00802

    Article  PubMed  PubMed Central  Google Scholar 

  • Mognol GP, Carneiro FR, Robbs BK, Faget DV, Viola JP (2016) Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 7:e2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800

    Article  CAS  PubMed  Google Scholar 

  • Morreale A, Venkatesan M, Mott HR, Owen D, Nietlispach D, Lowe PN, Laue ED (2000) Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat Struct Biol 7:384–388

    Article  CAS  PubMed  Google Scholar 

  • Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    Article  CAS  PubMed  Google Scholar 

  • Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656

    Article  PubMed  CAS  Google Scholar 

  • Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586:5383–5401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Brain Res Mol Brain Res 118:102–110

    Article  CAS  PubMed  Google Scholar 

  • Nohara LL, Stanwood SR, Omilusik KD, Jefferies WA (2015) Tweeters, woofers and horns: the complex orchestration of calcium currents in T lymphocytes. Front Immunol 6:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh-Hora M, Komatsu N, Pishyareh M, Feske S, Hori S, Taniguchi M, Rao A, Takayanagi H (2013) Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. Immunity 38(5):881–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omilusik K, Priatel JJ, Chen X, Wang YT, Xu H, Choi KB, Gopaul R, McIntyre-Smith A, Teh HS, Tan R, Bech-Hansen NT, Waterfield D, Fedida D, Hunt SV, Jefferies WA (2011) The Ca(v)1.4 calcium channel is a critical regulator of T cell receptor signaling and naive T cell homeostasis. Immunity 35:349–360

    Article  CAS  PubMed  Google Scholar 

  • Oruganti SR, Edin S, Grundstrom C, Grundstrom T (2011) CaMKII targets Bcl10 in T-cell receptor induced activation of NF-kappaB. Mol Immunol 48:1448–1460

    Article  CAS  PubMed  Google Scholar 

  • Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149:425–438

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  CAS  PubMed  Google Scholar 

  • Quintana A, Rajanikanth V, Farber-Katz S, Gudlur A, Zhang C, Jing J, Zhou Y, Rao A, Hogan PG (2015) TMEM110 regulates the maintenance and remodeling of mammalian ER-plasma membrane junctions competent for STIM-ORAI signaling. Proc Natl Acad Sci USA 112:E7083–E7092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie MF, Samakai E, Soboloff J (2012) STIM1 is required for attenuation of PMCA-mediated Ca2+ clearance during T-cell activation. EMBO J 31:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP (2008) Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol 28:7168–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samelson LE (2011) Immunoreceptor signaling. Cold Spring Harb Perspect Biol 3(12):a011510

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuhmann MK, Stegner D, Berna-Erro A, Bittner S, Braun A, Kleinschnitz C, Stoll G, Wiendl H, Meuth SG, Nieswandt B (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 184:1536–1542

    Article  CAS  PubMed  Google Scholar 

  • Scrimgeour N, Litjens T, Ma L, Barritt GJ, Rychkov GY (2009) Properties of Orai1 mediated store-operated current depend on the expression levels of STIM1 and Orai1 proteins. J Physiol 587:2903–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serfling E, Klein-Hessling S, Palmetshofer A, Bopp T, Stassen M, Schmitt E (2006) NFAT transcription factors in control of peripheral T cell tolerance. Eur J Immunol 36:2837–2843

    Article  CAS  PubMed  Google Scholar 

  • Serfling E, Avots A, Klein-Hessling S, Rudolf R, Vaeth M, Berberich-Siebelt F (2012) NFATc1/alphaA: the other face of NFAT Factors in lymphocytes. Cell Commun Signal 10:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Findlay GM, Bandukwala HS, Oberdoerffer S, Baust B, Li Z, Schmidt V, Hogan PG, Sacks DB, Rao A (2011) Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci USA 108:11381–11386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Bi Y, Yang W, Guo X, Jiang Y, Wan C, Li L, Bai Y, Guo J, Wang Y, Chen X, Wu B, Sun H, Liu W, Wang J, Xu C (2013) Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493:111–115

    Article  PubMed  CAS  Google Scholar 

  • Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprent J, Surh CD (2011) Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth S, Gwack Y (2012) Orai1, STIM1, and their associating partners. J Physiol 590:4169–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth S, Gwack Y (2013a) Molecular regulation of the pore component of CRAC channels, Orai1. Curr Top Membr 71:181–207

    Article  CAS  PubMed  Google Scholar 

  • Srikanth S, Gwack Y (2013b) Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 35:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010a) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12:436–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth S, Jung HJ, Ribalet B, Gwack Y (2010b) The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J Biol Chem 285:5066–5075

    Article  CAS  PubMed  Google Scholar 

  • Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y (2012) Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:8682–8687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth S, Ribalet B, Gwack Y (2013) Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 7(5):354–363

    Article  CAS  Google Scholar 

  • Srikanth S, Kim KD, Gao Y, Woo JS, Ghosh S, Calmettes G, Paz A, Abramson J, Jiang M, Gwack Y (2016a) A large Rab GTPase encoded by CRACR2A is a component of subsynaptic vesicles that transmit T cell activation signals. Sci Signal 9:ra31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srikanth S, Woo JS, Gwack Y (2016b) A large Rab GTPase family in a small GTPase world. Small GTPases 24:1–6

    Google Scholar 

  • Srinivasan M, Frauwirth KA (2007) Reciprocal NFAT1 and NFAT2 nuclear localization in CD8+ anergic T cells is regulated by suboptimal calcium signaling. J Immunol 179:3734–3741

    Article  CAS  PubMed  Google Scholar 

  • Strasser A (2005) The role of BH3-only proteins in the immune system. Nat Rev Immunol 5:189–200

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Pellegrini M (2004) T-lymphocyte death during shutdown of an immune response. Trends Immunol 25:610–615

    Article  CAS  PubMed  Google Scholar 

  • Sun Z (2012) Intervention of PKC-theta as an immunosuppressive regimen. Front Immunol 3:225

    PubMed  PubMed Central  Google Scholar 

  • Sun Z, Arendt CW, Ellmeier W, Schaeffer EM, Sunshine MJ, Gandhi L, Annes J, Petrzilka D, Kupfer A, Schwartzberg PL, Littman DR (2000) PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404:402–407

    Article  CAS  PubMed  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    CAS  PubMed  Google Scholar 

  • Tybulewicz VL (2005) Vav-family proteins in T-cell signalling. Curr Opin Immunol 17:267–274

    Article  CAS  PubMed  Google Scholar 

  • Varnai P, Toth B, Toth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J Biol Chem 282:29678–29690

    Article  CAS  PubMed  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinnet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Kadlecek TA, Au-Yeung BB, Goodfellow HE, Hsu LY, Freedman TS, Weiss A (2010) ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb Perspect Biol 2:a002279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisleder N, Takeshima H, Ma J (2008) Immuno-proteomic approach to excitation–contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium 43:1–8

    Article  CAS  PubMed  Google Scholar 

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Wilson LA, McKeown L, Tumova S, Li J, Beech DJ (2015) Expression of a long variant of CRACR2A that belongs to the Rab GTPase protein family in endothelial cells. Biochem Biophys Res Commun 456:398–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo JS, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y (2016) Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci USA 113:2762–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Peisley A, Graef IA, Crabtree GR (2007) NFAT signaling and the invention of vertebrates. Trends Cell Biol 17:251–260

    Article  CAS  PubMed  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yeromin AV, Hu J, Amcheslavsky A, Zheng H, Cahalan MD (2011) Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc Natl Acad Sci USA 108:17838–17843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health grants AI-083432 and AI109059 (Y.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousang Gwack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Srikanth, S., Woo, J.S., Sun, Z., Gwack, Y. (2017). Immunological Disorders: Regulation of Ca2+ Signaling in T Lymphocytes. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_21

Download citation

Publish with us

Policies and ethics