Skip to main content

Constraint-Based Modeling and Simulation of Cell Populations

  • Conference paper
  • First Online:
Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry (WIVACE 2016)

Abstract

The intratumor heterogeneity has been recognized to characterize cancer cells impairing the efficacy of cancer treatments. We here propose an extension of constraint-based modeling approach in order to simulate metabolism of cell populations with the aim to provide a more complete characterization of these systems, especially focusing on the relationships among their components. We tested our methodology by using a toy-model and taking into account the main metabolic pathways involved in cancer metabolic rewiring. This toy-model is used as “individual” to construct a “population model” characterized by multiple interacting individuals, all having the same topology and stoichiometry, and sharing the same nutrients supply. We observed that, in our population, cancer cells cooperate with each other to reach a common objective, but without necessarily having the same metabolic traits. We also noticed that the heterogeneity emerging from the population model is due to the mismatch between the objective of the individual members and the objective of the entire population.

M. Di Filippo and C. Damiani—Equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., Nielsen, J.: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using init. PLoS Comput. Biol. 8(5), e1002518 (2012)

    Article  Google Scholar 

  2. Agren, R., Mardinoglu, A., Asplund, A., Kampf, C., Uhlen, M., Nielsen, J.: Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10(3), 721 (2014)

    Article  Google Scholar 

  3. Alberghina, L., Westerhoff, H.V.: Systems Biology: Definitions and Perspectives (Topics in Current Genetics), vol. 13. Springer, Heidelberg (2005)

    Book  Google Scholar 

  4. Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D., Pescini, D., Molinari, S., Mauri, G., Alberghina, L., et al.: Computational strategies for a system-level understanding of metabolism. Metabolites 4(4), 1034–1087 (2014)

    Article  Google Scholar 

  5. Di Filippo, M., Colombo, R., Damiani, C., Pescini, D., Gaglio, D., Vanoni, M., Alberghina, L., Mauri, G.: Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models. Comput. Biol. Chem. 62, 60–69 (2016)

    Article  Google Scholar 

  6. Ebrahim, A., Lerman, J.A., Palsson, B.Ø., Hyduke, D.R.: COBRApy: Constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7(1), 74 (2013)

    Article  Google Scholar 

  7. Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L., Pallson, B.Ø.: Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7(2), 129–143 (2009)

    Article  Google Scholar 

  8. Folger, O., Jerby, L., Frezza, C., Gottlieb, E., Ruppin, E., Shlomi, T.: Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7(1), 501 (2011)

    Article  Google Scholar 

  9. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Eng. J. Med. 366(10), 883–892 (2012)

    Article  Google Scholar 

  10. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  11. Lee, J.M., Gianchandani, E.P., Papin, J.A.: Flux balance analysis in the era of metabolomics. Briefings Bioinform. 7(2), 140–150 (2006)

    Article  Google Scholar 

  12. Mahadevan, R., Schilling, C.: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5(4), 264–276 (2003)

    Article  Google Scholar 

  13. Marusyk, A., Polyak, K.: Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Rev. Cancer 1805(117), 105–117 (2010)

    Article  Google Scholar 

  14. Mohanty, A.K., Datta, A., Venkatraj, J.: Determining the relative prevalence of different subpopulations in heterogeneous cancer tissue. In: 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS), pp. 95–96. IEEE (2012)

    Google Scholar 

  15. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010)

    Article  Google Scholar 

  16. Reed, J.L., Palsson, B.Ø.: Genome-scale in silico models of e. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14(9), 1797–1805 (2004)

    Article  Google Scholar 

  17. Ryu, J.Y., Kim, H.U., Lee, S.Y.: Reconstruction of genome-scale human metabolic models using omics data. Integr. Biol. 7(8), 859–868 (2015)

    Article  Google Scholar 

  18. Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., et al.: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat. Protoc. 6(9), 1290–1307 (2011)

    Article  Google Scholar 

  19. Yoo, M.H., Hatfield, D.L.: The cancer stem cell theory: is it correct? Mol. Cells 26(5), 514 (2008)

    Google Scholar 

  20. Zenobi, R.: Single-cell metabolomics: analytical and biological perspectives. Science 342(6163), 1243259 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The institutional financial support to SYSBIO Center of Systems Biology - within the Italian Roadmap for ESFRI Research Infrastructures - is gratefully acknowledged. M.D. is supported by SYSBIO fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Damiani or Dario Pescini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Di Filippo, M., Damiani, C., Colombo, R., Pescini, D., Mauri, G. (2017). Constraint-Based Modeling and Simulation of Cell Populations. In: Rossi, F., Piotto, S., Concilio, S. (eds) Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry. WIVACE 2016. Communications in Computer and Information Science, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-319-57711-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57711-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57710-4

  • Online ISBN: 978-3-319-57711-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics