Skip to main content

Lessons from Animals in Extreme Environments

  • Chapter
  • First Online:
Ophthalmology in Extreme Environments

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Many animals perform highly refined visual tasks under a surprisingly diverse array of conditions. For some this requires contending with the dramatic refractive changes experienced when transitioning between vision in air and while under water. Others must identify and capture prey in near darkness. Arctic animals must find food while also avoiding predators and do so under conditions ranging from continuous summer daylight to continuous winter darkness. And still others visually spot and track prey while moving at speeds that rival Formula 1 race cars. These astonishing visual feats are accomplished with ocular systems that are not too far different than our own; however the adaptations they possess change ordinary into the extraordinary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alerstam T. Radar observations of the stoop of the Peregrine Falcon Falco peregrinus and the Goshawk Accipiter gentilis. Ibis. 1987;129:267–73.

    Article  Google Scholar 

  2. Banks MS, Sprague WW, Schmoll J, et al. Why do animal eyes have pupils of different shapes? Sci Adv. 2015;1(7):e1500391.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brischoux F, Pizzatto L, Shine R. Insights into the adaptive significance of vertical pupil shape in snakes. J Evol Biol. 2010;23(9):1878–85.

    Article  CAS  PubMed  Google Scholar 

  4. Denton EJ. The responses of the pupil of Gekko gekko to external light stimulus. J Gen Physiol. 1956;40(2):201–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gislén A, Dacke M, Kröger RH, et al. Superior underwater vision in a human population of sea gypsies. Curr Biol. 2003;13(10):833–6.

    Article  PubMed  Google Scholar 

  6. Gislén A, Warrant EJ, Dacke M, et al. Visual training improves underwater vision in children. Vis Res. 2006;46(20):3443–50.

    Article  PubMed  Google Scholar 

  7. González-Martín-Moro J, Gómez-Sanz F, Sales-Sanz A, et al. Pupil shape in the animal kingdom: from the pseudopupil to the vertical pupil. Arch Soc Esp Oftalmol. 2014;89(12):484–94.

    Article  PubMed  Google Scholar 

  8. Hanke FD, Dehnhardt G, Schaeffel F, et al. Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vis Res. 2006;46(6–7):837–47.

    Article  PubMed  Google Scholar 

  9. Harpole T (2005) Falling with the Falcon. Peregrines think simple thoughts: See food. Fly down. Go fast. Very fast. Air & Space Magazine march 2005. Available via http://www.airspacemag.com/flight-today/falling-with-the-falcon-7491768/?all&no-ist. Accessed 1 June 2016.

  10. Hogg C, Neveu M, Stokkan KA, et al. Arctic reindeer extend their visual range into the ultraviolet. J Exp Biol. 2011;214(Pt 12):2014–9.

    Article  PubMed  Google Scholar 

  11. Howland HC, Sivak JG. Penguin vision in air and water. Vis Res. 1984;24(12):1905–9.

    Article  CAS  PubMed  Google Scholar 

  12. Inzunza O, Bravo H, Smith RL, et al. Topography and morphology of retinal ganglion cells in Falconiforms: a study on predatory and carrion-eating birds. Anat Rec. 1991;229(2):271–7.

    Article  CAS  PubMed  Google Scholar 

  13. Katzir G, Howland HC. Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol. 2003;206(Pt 5):833–41.

    Article  PubMed  Google Scholar 

  14. Land MF, Nilsson DE. Animal Eyes. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  15. Latin Word Lookup. University of Notre Dame. 2016. http://www.archives.nd.edu/cgi-bin/lookup.pl?stem=tapet&ending=um. Accessed 1 June 2016.

  16. Machovsky-Capuska GE, Howland HC, Raubenheimer D, et al. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet. Proc Biol Sci. 2012;279(1745):4118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malmström T, Kröger RH. Pupil shapes and lens optics in the eyes of terrestrial vertebrates. J Exp Biol. 2006;209(Pt 1):18–25.

    Article  PubMed  Google Scholar 

  18. Mäthger LM, Hanlon RT, Håkansson J, et al. The W-shaped pupil in cuttlefish (Sepia officinalis): functions for improving horizontal vision. Vis Res. 2013;83:19–24.

    Article  PubMed  Google Scholar 

  19. Ollivier FJ, Samuelson DA, Brooks DE, et al. Comparative morphology of the tapetum lucidum (among selected species). Vet Ophthalmol. 2004;7(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  20. Owens GL, Rennison DJ, Allison WT, et al. In the four-eyed fish (Anableps anableps), the regions of the retina exposed to aquatic and aerial light do not express the same set of opsin genes. Biol Lett. 2012;8(1):86–9.

    Article  PubMed  Google Scholar 

  21. Perseus Digital Library. Tufts University, Latin Word Study Tool. 2016. http://www.perseus.tufts.edu/hopper/morph?l=lucidum&la=la. Accessed 1 June 2016.

  22. Reymond L. Spatial visual acuity of the falcon, Falco berigora: a behavioural, optical and anatomical investigation. Vis Res. 1987;27(10):1859–74.

    Article  CAS  PubMed  Google Scholar 

  23. Roth LS, Lundström L, Kelber A, et al. The pupils and optical systems of gecko eyes. J Vis. 2009;9(3):27.1–11.

    Article  Google Scholar 

  24. Ruggeri M, Major JC Jr, McKeown C, et al. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(11):5789–95.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schwab IR, Maggs D. The falcon’s stoop. Br J Ophthalmol. 2004;88(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwab IR, Yuen CK, Buyukmihci NC, et al. Evolution of the tapetum. Trans Am Ophthalmol Soc. 2002;100:187–99.

    PubMed  PubMed Central  Google Scholar 

  27. Sivak JG, Hildebrand T, Lebert C. Magnitude and rate of accommodation in diving and nondiving birds. Vis Res. 1985;25(7):925–33.

    Article  CAS  PubMed  Google Scholar 

  28. Sivak JG, Howland HC, West J, et al. The eye of the hooded seal, Cystophora cristata, in air and water. J Comp Physiol A. 1989;165(6):771–7.

    Article  CAS  PubMed  Google Scholar 

  29. Shinozaki A, Hosaka Y, Imagawa T, et al. Relationship between distribution of tapetum fibrosum and retinal pigment epithelium in the sheep eye. J Vet Med Sci. 2010;72(2):211–5.

    Article  PubMed  Google Scholar 

  30. Shinozaki A, Takagi S, Hosaka YZ, et al. The fibrous tapetum of the horse eye. J Anat. 2013;223(5):509–18.

    PubMed  PubMed Central  Google Scholar 

  31. Snyder AW, Miller WH. Telephoto lens system of falconiform eyes. Nature. 1978;275(5676):127–9.

    Article  CAS  PubMed  Google Scholar 

  32. Stokkan KA, Folkow L, Dukes J, et al. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer. Proc Biol Sci. 2013;280(1773):20132451.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tucker VA. Gliding flight: speed and acceleration of ideal falcons during diving and pull out. J Exp Biol. 1998;201(Pt 3):403–14.

    CAS  PubMed  Google Scholar 

  34. Tucker VA. The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol. 2000;203(Pt 24):3745–54.

    CAS  PubMed  Google Scholar 

  35. Tucker VA, Cade TJ, Tucker AE. Diving speeds and angles of a gyrfalcon (Falco rusticolus). J Exp Biol. 1998;201(Pt 13):2061–70.

    PubMed  Google Scholar 

  36. Tucker VA, Tucker AE, Akers K, et al. Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J Exp Biol. 2000;203(Pt 24):3755–63.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

Michael Mines and Christopher Ochieng declare we have no conflict of interest. No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mines MD, DVM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mines, M.J., Ochieng, C.O. (2017). Lessons from Animals in Extreme Environments. In: Subramanian, P. (eds) Ophthalmology in Extreme Environments. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-57600-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57600-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57599-5

  • Online ISBN: 978-3-319-57600-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics