Skip to main content

Night Vision and Military Operations

  • Chapter
  • First Online:
Ophthalmology in Extreme Environments

Abstract

Nighttime military operations include challenges encountered in daylight but also introduce unique visual and cognitive demands characteristic of a low-light environment. Because the majority of human sensory input is visual, and successful performance of military tasks is largely dependent on visual performance, it is critical for personnel operating in settings with reduced visual capability to maximize the abilities and strategies they retain. While military image intensification devices (e.g., night vision goggles, NVGs) significantly enhance visual performance, equipment can malfunction, batteries expire, and mission-specific combat loads may preclude utilization of all available aids. Hence the availability of optical aids should not undermine the importance of optimally corrected unaided night vision. This chapter discusses some of the important factors contributing to night vision and their influence on performance on commonly encountered tasks during military operations.

The views expressed in this chapter are those of the authors and do not reflect the official policy of the Department of the Army/Navy/Air Force, Department of Defense, or the U.S. Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alio JL, Pinero D, Muftuoglu O. Corneal Wavefront-guided retreatments for significant night vision symptoms after myopic laser refractive surgery. Am J Ophthalmol. 2008;145:65–74.

    Article  PubMed  Google Scholar 

  2. Applegate RA, Marsack JD, Thibos LN. Metrics of retinal image quality predict visual performance in eyes with 20/17 or better visual acuity. Optom Vis Sci. 2006;83(9):635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Babizhayev MA. Glare disability and driving safety. Ophthalmic Res. 2003;35(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  4. Barbur JL, Stockman A. Photopic, mesopic and scotopic vision and changes in visual performance. In: Dartt DA, editor. Encyclopedia of the eye, vol. 3. Oxford: Academic; 2010. p. 323–31.

    Chapter  Google Scholar 

  5. Barrio A, Antona B, Puell MC. Repeatability of mesopic visual acuity measurements using high- and low-contrast ETDRS letter charts. Graefes Arch Clin Exp Ophthalmol. 2015;253(5):791–5. doi:10.1007/s00417-014-2876-z. Epub 2014 Dec 9

    Article  PubMed  Google Scholar 

  6. Bartholomew AJ, Lad EM, Cao D, Bach M, Cirulli ET. Individual differences in scotopic visual acuity and contrast sensitivity: genetic and non-genetic influences. PLoS One. 2016;11(2):e0148192. doi:10.1371/journal.pone.0148192.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bower KS, Burka JM, Subramanian PS, Stutzman RD, Mines MJ, Rabin JC. Night firing range performance following photorefractive keratectomy and laser in situ keratomileusis. Mil Med. 2006;171(6):468–71.

    Article  PubMed  Google Scholar 

  8. Chalita MR, Chavala S, Xu M, Krueger RR. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology. 2004;111:447–53.

    Article  PubMed  Google Scholar 

  9. Sharma M, Wachler BS, Chan CC. Higher order aberrations and relative risk of symptoms after LASIK. J Refract Surg. 2007;23:252–6.

    PubMed  Google Scholar 

  10. Connolly DM. Oxygenation state and twilight vision at 2438 m. Aviat Space Environ Med. 2011;82(1):2–8.

    Article  PubMed  Google Scholar 

  11. Connolly DM, Barbur JL. Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia. Aviat Space Environ Med. 2009;80(11):933–40.

    Article  CAS  PubMed  Google Scholar 

  12. Connolly DM, Serle WP. Assisted night vision and oxygenation state: ‘steady adapted gaze’. Aviat Space Environ Med. 2014;85(2):120–9.

    Article  PubMed  Google Scholar 

  13. Davis HQ, Kamimori GH, Kulesh DA, Mehm WJ, Anderson LH, Elsayed AM, Burge JR, Balkin TJ. Visual performance with the aviator night vision imaging system (ANVIS) at a simulated altitude of 4300 meters. Aviat Space Environ Med. 1995;66(5):430–4.

    CAS  PubMed  Google Scholar 

  14. Department of the Army DA Pamphlet 40-506. The Army vision conservation and readiness program. 2009. http://armypubs.army.mil/epubs/pdf/p40_506.pdf. Accessed 20 June 2016.

  15. DeVilbiss CA, Antonio JC. Measurement of night vision goggle (NVG) visual acuity with the NVG resolution chart. Aviat Space Environ Med. 1994;65(9):846–50.

    CAS  PubMed  Google Scholar 

  16. Donderi DC. Visual acuity, color vision, and visual search performance at sea. Hum Factors. 1994;36(1):129–44.

    CAS  PubMed  Google Scholar 

  17. Dyer JL, Young KM. Night vision goggle research and training issues for ground forces: a literature review. Army Research Inst for Behavioral and Social Sciences Fort Benning GA; 1998 May. No. ARI-TR-1082. http://www.dtic.mil/dtic/tr/fulltext/u2/a347071.pdf. Accessed: 20 June 2016.

  18. Edwards JD, Burka JM, Bower KS, Stutzman RD, Sediq DA, Rabin JC. Effect of Brimonidine tartrate 0.15% on night-vision difficulty and contrast testing after refractive surgery. J Cataract Refract Surg. 2008;34:1538–41.

    Article  PubMed  Google Scholar 

  19. Farr WD. Compatibility of the aviation night vision imaging systems and the aging aviator. Aviat Space Environ Med. 1989;60(10 Pt 2):B78–80.

    CAS  PubMed  Google Scholar 

  20. Gillingham KK, Fosdick JP. High-G training for fighter aircrew. Aviat Space Environ Med. 1998;59(1):12–9.

    Google Scholar 

  21. Hammond MD, Madigan WP, Bower KS. Refractive surgery in the United States Army, 2000–2003. Ophthalmology. 2005;112:184–90.

    Article  PubMed  Google Scholar 

  22. Hatch BC, Hilber DJ, Elledge JB, Stout JW, Lee RB. The effects of visual acuity on target discrimination and shooting performance. Optom Vis Sci. 2009;86(12):E1359–67. doi:10.1097/OPX.0b013e3181be9740.

    Article  PubMed  Google Scholar 

  23. He L, Manche LL. Prospective randomized contralateral eye evaluation of subjective quality of vision after wavefront-guided or wavefront-optimized photorefractive keratectomy. J Refract Surg. 2014;30(1):6–12.

    Article  PubMed  Google Scholar 

  24. U.S. Army Communications-Electronics Research, Development and Engineering Center. History of army night vision. 2015. http://www.cerdec.army.mil/inside_cerdec/nvesd/history. Accessed: 20 June 2016

  25. Holladay JT, Dudeja DR, Chang J. Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography. J Cataract Refract Surg. 1999;25:663–9.

    Article  CAS  PubMed  Google Scholar 

  26. Jackson GR, Owsley C. Scotopic sensitivity during adulthood. Vis Res. 2000;40(18):2467–73.

    Article  CAS  PubMed  Google Scholar 

  27. Jackson GR, Owsley C, McGwin G Jr. Aging and dark adaptation. Vis Res. 1999;39(23):3975–82.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson CW. The role of night vision equipment in military incidents and accidents. In: Johnson CW, Palanque P, editors. Human error, safety and systems development. IFIP International Federation for Information Processing, Vol. 152. Boston: Springer; 2004. p. 1–16. 

    Google Scholar 

  29. Kaupp SE, Schallhorn SC, Tanzer DJ, Kelly NG, Malady SE, Brunstetter TJ. Prospective comparison of simulated night driving performance after wavefront guided treatments, both PRK and LASIK, for moderate and high myopia. Poster presented at the Association for Research in Vision and Ophthalmology annual meeting, Fort Lauderdale, May 2007.

    Google Scholar 

  30. Kezirian GM, Stonecipher KG. Subjective assessment of mesopic visual function after laser in situ keratomileusis. Ophthalmol Clin N Am. 2004 ;17(2):211–24, vii.

    Google Scholar 

  31. Kim HJ. Prevalence of astigmatism among aviators and its limiting effect upon visual performance with the AN/PVS-5 night vision goggles. 1982. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA112836. Accessed 20 June 2016.

  32. Knight KK, Apsey DA, Jackson WG, Dennis RJ. A comparison of stereopsis with ANVIS and F4949 night vision goggles. Aviat Space Environ Med. 1998;69(2):99–103.

    CAS  PubMed  Google Scholar 

  33. Kobrick JL, Zwick H, Witt CE, Devine JA. Effects of extended hypoxia on night vision. Aviat Space Environ Med. 1984;55(3):191–5.

    CAS  PubMed  Google Scholar 

  34. Lee HK, Choe CM, Ma KT, Kim EK. Measurement of contrast sensitivity and glare under mesopic and photopic conditions following wavefront-guided and conventional LASIK surgery. J Refract Surg. 2006;22(7):647–55.

    PubMed  Google Scholar 

  35. Levy Y, Glovinsky Y. Evaluation of mid-term stability of night vision tests. Aviat Space Environ Med. 1997;68(7):565–8.

    CAS  PubMed  Google Scholar 

  36. Lombardo M, Lombardo G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J Cataract Refract Surg. 2010;36(2):313–31.

    Article  PubMed  Google Scholar 

  37. Mastropasqua L, Nubile M, Ciancaglini M, Toto L, Ballone E. Prospective randomized comparison of wavefront-guided and conventional photorefractive keratectomy for myopia with the meditec MEL 70 laser. J Refract Surg. 2004;20(5):422–31.

    PubMed  Google Scholar 

  38. Maurer T, Deaver D, Howell C, Moyer S, Nguyen O, Mueller G, Ryan DS, Sia RK, Stutzman RD, Pasternak JF, Bower KS. Military target task performance after wavefront-guided (WFG) and wavefront-optimized (WFO) photorefractive keratectomy (PRK) Proc. SPIE. 9112, Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring IV, 91120U; 2014.

    Google Scholar 

  39. Monaco WA, Weatherless RA, Kalb JT. Enhancement of visual target detection with night vision goggles. 2006. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA448466. Accessed 20 June 2016.

  40. Mrochen M, Donitzky C, Wüllner C, Löffler J. Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg. 2004;30:775–85.

    Article  PubMed  Google Scholar 

  41. Neeracher B, Senn P, Schipper I. Glare sensitivity and optical side effects 1 year after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2004;30:1696–701.

    Article  PubMed  Google Scholar 

  42. O’Neal MR, Miller II, Robert E. Further investigation of contrast sensitivity and visual acuity in pilot detection of aircraft Wright-Patterson AFB, OH: Harry G Armstrong Aerospace Medical Research Lab. No. AAMRL-TR-88-002. 1998. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA198434. Accessed 20 June 2016.

  43. Oshika T, Okamoto C, Samejima T, Tokunaga T, Miyata K. Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes. Ophthalmology. 2006;113:1807–12.

    Article  PubMed  Google Scholar 

  44. Owsley C, Sloane ME. Contrast sensitivity, acuity, and the perception of ‘real-world’ targets. Br J Ophthalmol. 1987;71(10):791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paulun VC, Schütz AC, Michel MM, Geisler WS, Gegenfurtner KR. Visual search under scotopic lighting conditions. Vis Res. 2015;113(Pt B):155–68. doi:10.1016/j.visres.2015.05.004. Epub 2015 May 16

    Article  PubMed  Google Scholar 

  46. Puell MC, Palomo C, Sánchez-Ramos C, Villena C. Normal values for photopic and mesopic letter contrast sensitivity. J Refract Surg. 2004;20(5):484–8.

    PubMed  Google Scholar 

  47. Quesnel NM, Lovasik JV, Ferremi C, Boileau M, Ieraci C. Laser in situ keratomileusis for myopia and the contrast sensitivity function. J Cataract Refract Surg. 2004;30(6):1209–18.

    Article  PubMed  Google Scholar 

  48. Rabin J. Spatial contrast sensitivity through aviator’s night vision imaging system. Aviat Space Environ Med. 1993;64(8):706–10.

    CAS  PubMed  Google Scholar 

  49. Rabin J, McLean W. A comparison between phosphors for aviators’s night visión imaging system. Aviat Space Environ Med. 1996;67(5):429–33.

    CAS  PubMed  Google Scholar 

  50. Rabin J, Wiley R. Switching from forward-looking infrared to night vision goggles: transitory effects on visual resolution. Aviat Space Environ Med. 1994;65(4):327–9.

    CAS  PubMed  Google Scholar 

  51. Reinstein DZ, Archer TJ, Couch D, Schroeder E, Wotteke M. A new night vision disturbances parameter and contrast sensitivity as indicators of success in wavefront-guided enhancement. J Refract Surg. 2005;21:S535–40. doi:10.3928/1081-597X-20050901-23.

    PubMed  Google Scholar 

  52. Reuter T. Fifty years of dark adaptation 1961–2011. Vis Res. 2011;51(21–22):2243–62. doi:10.1016/j.visres.2011.08.021. Epub 2011 Sep 6

  53. Rivers BA, Ryan DS, Sia RK, Peppers L, Logan LA, Eaddy JB, Pasternak JF, Stutzman RD, Rodgers SB, Bower KS. Visual performance after wavefront-guided and wavefront-optimized Photorefractive Keratectomy (PRK) and Laser in situ keratomileusis (LASIK) Poster presented at the Association for Research in Vision and Ophthalmology annual meeting, Orlando, May 2014.

    Google Scholar 

  54. Rivers BA, Sia RK, Peppers L, Ryan DS, Rodgers SB. Validation of a military performance questionnaire for U.S. military service members with refractive error having refractive surgery. Poster presented at the American Society of Cataract and Refractive Surgery Annual Meeting. New Orleans, May 2016.

    Google Scholar 

  55. Ryan DS, Peppers L, Sia RK, Stutzman RD, Mines MJ, Wroblewski KJ, Bower KS. US soldiers’ self-assessment of deployment after refractive surgery. Poster presented at the American Society of Cataract and Refractive Surgery Annual Meeting, Chicago, April 2012.

    Google Scholar 

  56. Ryan DS, Sia RK, Stutzman RD, Pasternak JF, Howard RS, Howell CL, Maurer T, Torres MF, Bower KS. Wavefront-guided versus wavefront-optimized photorefractive keratectomy: visual and military task performance. Military Med. 1636;182(1/2):2017.

    Google Scholar 

  57. Sakata N, Tokundaga T, Miyata K, Oshika T. Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy. Jpn J Ophthalmol. 2007;51(5):347–52.

    Article  PubMed  Google Scholar 

  58. Schallhorn SC, Blanton CL, Kaupp SE, Sutphin J, Gordon M, Goforth H Jr, Butler FK Jr. Preliminary results of photorefractive keratectomy in active-duty US Navy personnel. Ophthalmology. 1996;103(1):5–22.

    Article  CAS  PubMed  Google Scholar 

  59. Schallhorn SC, Kaupp SE, Tanzer DJ, Tidwell J, Laurent J, Bourque LB. Pupil size and quality of vision after LASIK. Ophthalmology. 2003;110(8):1606–14

    Google Scholar 

  60. Schallhorn SC, Tanzer DJ, Kaupp SE, Brown M, Malady SE. Comparison of night driving performance after wavefront-guided and conventional LASIK for moderate myopia. Ophthalmology. 2009;116(4):702–9.

    Article  PubMed  Google Scholar 

  61. Sheehy JB, Wilkinson M. Depth perception after prolonged usage of night vision goggles. Aviat Space Environ Med. 1989;60(6):573–9.

    CAS  PubMed  Google Scholar 

  62. Sia RK, Ryan DS, Stutzman RD, Pasternak JF, Eaddy JB, Logan LA, Torres MF, Bower KS. Wavefront-guided versus wavefront-optimized photorefractive keratectomy: clinical outcomes and patient satisfaction. J Cataract Refract Surg. 2015;41(10):2152–64.

    Article  PubMed  Google Scholar 

  63. Silberman WS, Apsey D, Ivan DJ, Jackson WG, Mitchell GW. The effect of test chart design and human factors on visual performance with night vision goggles. Aviat Space Environ Med. 1994;65(12):1077–81.

    CAS  PubMed  Google Scholar 

  64. Subramanian PS, O’Kane B, Stefanik R, Stevens J, Rabin J, Bauer RM, Bower KS. Visual acuity and night vision performance after photorefractive keratectomy for myopia. Ophthalmology. 2003;110(3):525–30.

    Article  PubMed  Google Scholar 

  65. Tanzer DJ, Brunstetter T, Zeber R, Hofmeister E, Kaupp S, Kelly N, Mirazaoff M, Sray W, Brown M, Schallhorn S. Laser in situ keratomileusis in United States naval aviators. J Cataract Refract Surg. 2013;39(7):1047–58.

    Article  PubMed  Google Scholar 

  66. Temme LA, Ricks E, Morris A, Sherry D. Visual contrast sensitivity of U.S. Navy jet pilots. Aviat Space Environ Med. 1991;62(11):1032–6.

    CAS  PubMed  Google Scholar 

  67. Thordsen JE, Bower KS, Warren BB, Stutzman R. Miotic effect of brimonidine tartrate 0.15% ophthalmic solution in normal eyes. J Cataract Refract Surg. 2004;30(8):1702–6.

    Article  PubMed  Google Scholar 

  68. Tipton DA, Marko AR, Ratino DA. The effects of acceleration forces on night vision. Aviat Space Environ Med. 1984;55(3):186–90.

    CAS  PubMed  Google Scholar 

  69. USCENTCOM 021922Z DEC 11 Mod eleven to USCENTCOM. Individual protection and individual-unit deployment policy. 2011. http://www.cpms.osd.mil/expeditionary/pdf/MOD11-USCENTCOM-Indiv-Protection-Indiv-Unit-Deployment-Policy-Incl-Tab-A-and-B.pdf. Accessed 20 June 2016.

  70. U.S. Army. Field Manual No. 3–22.9 Rifle marksmanship m16−/m4-series weapons. http://armypubs.army.mil/doctrine/DR_pubs/dr_a/pdf/fm3_22x9.pdf. Accessed 20 June 2016.

  71. Van de Pol C, Greig JL, Estrada A, Bissette GM, Bower KS. Visual and flight performance recovery after PRK or LASIK in helicopter pilots. Aviat Space Environ Med. 2007;78(6):547–53.

    PubMed  Google Scholar 

  72. Vecchi D, Morgagni F, Guadagno AG, Lucertini M. Visual function at altitude under night vision assisted conditions. Aviat Space Environ Med. 2014;85(1):60–5.

    Article  PubMed  Google Scholar 

  73. Villarrubia A, Palacín E, Bains R, Gersol J. Comparison of custom ablation and conventional laser in situ keratomileusis for myopia and myopic astigmatism using the Alcon excimer laser. Cornea. 2009;28(9):971–5.

    Article  PubMed  Google Scholar 

  74. Wandell BA. Pattern sensitivity. Foundations of vision. 1995. https://foundationsofvision.stanford.edu/chapter-7-pattern-sensitivity. Accessed 2 Jul 2016.

  75. Wells KH, Wagner H, Reich LN, Hardigan PC. Military readiness: an exploration of the relationship between marksmanship and visual acuity. Mil Med. 2009;174(4):398–402.

    Article  PubMed  Google Scholar 

  76. Wood JM, Collins MJ, Chaparro A, Marszalek A, Carberry T, Lacherez P, Chu BS. Differential effects of refractive blur on day and nighttime driving performance. Invest Ophthalmol Vis Sci. 2014;55(4):2284–9. doi:10.1167/iovs.13-13369.

    Article  PubMed  Google Scholar 

  77. Wood JM, Owens DA. Standard measures of visual acuity do not predict drivers’ recognition performance under day or night conditions. Optom Vis Sci. 2005;2(8):698–705.

    Article  Google Scholar 

  78. Woods RL, Wood JM. The role of contrast sensitivity charts and contrast letter charts in clinical practice. Clin Exp Optom. 1995;78(2):42–57.

    Article  Google Scholar 

  79. Yamane N, Miyata K, Samejima T, Hiraoka T, Kiuchi T, Okamoto F, Hirohara Y, Mihashi T, Oshika T. Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2004;45(11):3986–90.

    Article  PubMed  Google Scholar 

  80. Yu J, Chen H, Wang F. Patient satisfaction and visual symptoms after wavefront-guided and wavefront-optimized LASIK with the WaveLight platform. J Refract Surg. 2008;24:477–86.

    PubMed  Google Scholar 

  81. Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol. 2015;5:1594. doi:10.3389/fpsyg.2014.01594.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang J, Zhou YH, Li R, Tian L. Visual performance after conventional LASIK and wavefront-guided LASIK with iris-registration: results at 1 year. Int J Ophthalmol. 2013;6(4):498–504.

    PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethical Requirements

Conflict of Interest

 Kraig S. Bower, Rose K. Sia, Denise S. Ryan, Bruce A. Rivers, Tana Maurer, and Jeff C. Rabin declare that they have no conflict of interest.

Informed Consent

 No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kraig S. Bower MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bower, K.S., Sia, R.K.C., Ryan, D.S., Rivers, B.A., Maurer, T., Rabin, J. (2017). Night Vision and Military Operations. In: Subramanian, P. (eds) Ophthalmology in Extreme Environments. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-57600-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57600-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57599-5

  • Online ISBN: 978-3-319-57600-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics