Skip to main content

Transcutaneous Vagus and Trigeminal Nerve Stimulation

  • Chapter
  • First Online:
Theory-Driven Approaches to Cognitive Enhancement

Abstract

Transcutaneous vagus nerve stimulation (tVNS) and trigeminal nerve stimulation (TNS) are noninvasive brain stimulation techniques that modulate brain activity via bottom-up mechanisms. That is, the stimulation of cranial nerves (with nuclei located in the brain stem) modulates upstream monoaminergic nuclei and the cortex. Given that tVNS and TNS are new stimulation techniques, this chapter addresses their effectiveness as cognitive and mood enhancer. We review the available physiological, cognitive, and behavioral studies on tVNS and TNS, to clarify whether and under which conditions real stimulation might enhance cognition and mood in heathy humans. Even though comparison between studies is difficult since different devices were used by different research groups and the stimulation methods differ broadly, e.g., in intensity (mA) and frequency (Hz), it seems that tVNS and TNS modulate cognition via norepinephrine (NE) and gamma-aminobutyric acid (GABA). Although more research is needed to fully understand the effects tVNS and TNS exert on cognition and mood in the long term, we conclude that tVNS and TNS are promising tools for enhancing cognitive functions and that there is an inverted U-shaped relationship between stimulation intensity and cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aramideh, M., & Ongerboer de Visser, B. W. (2002). Brainstem reflexes: Electrodiagnostic techniques, physiology, normative data, and clinical applications. Muscle and Nerve, 26(1), 14–30.

    PubMed  Google Scholar 

  • Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., Van Bockstaele, E., Pieribone, V., et al. (1991). Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. Progress in Brain Research, 88, 47–75.

    PubMed  Google Scholar 

  • Bauer, S., Baier, H., Baumgartner, C., Bohlmann, K., Fauser, S., Graf, W., … & Mayer, T. (2016). Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: A randomized, double-blind clinical trial (cMPsE02). Brain Stimulation, 9(3), 356–363.

    Google Scholar 

  • Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., … & Wilder, B. J. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Research, 20(3), 221–227.

    Google Scholar 

  • Beste, C., Steenbergen, L., Sellaro, R., Grigoriadou, S., Zhang, R., Chmielewski, W., Stock, A.-K., Colzato, L. (2016). Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—A study using transcutaneous vagus nerve stimulation. Brain Stimulation, 9(6), 811–818.

    Google Scholar 

  • Bliss, T. V. P., Collingridge, G. L., & Morris, R. G. M. (2014). Synaptic plasticity in health and disease: Introduction and overview. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1633), 20130129.

    PubMed  PubMed Central  Google Scholar 

  • Burger, A. M., Verkuil, B., Van Diest, I., Van der Does, W., Thayer, J. F., & Brosschot, J. F. (2016). The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiology of Learning and Memory, 132, 49–56.

    PubMed  Google Scholar 

  • Capone, F., Assenza, G., Di Pino, G., Musumeci, G., Ranieri, F., Florio, L., … & Di Lazzaro, V. (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. Journal of Neural Transmission, 122(5), 679–685.

    Google Scholar 

  • Clark, K. B., Krahl, S. E., Smith, D. C., & Jensen, R. A. (1995). Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiology of Learning and Memory, 63(3), 213–216.

    PubMed  Google Scholar 

  • Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A., & Jensen, R. A. (1999). Enhanced recognition memory following vagus nerve stimulation in human subjects. Nature Neuroscience, 2(1), 94–98.

    PubMed  Google Scholar 

  • Colzato, L. S., de Rover, M., van den Wildenberg, P. M., & Nieuwenhuis, S. (2013). Genetic marker of norepinephrine synthesis predicts individual differences in post-error slowing: A pilot study. Neuropsychologia, 51, 2600–2604.

    PubMed  Google Scholar 

  • Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129(7), 1659–1673.

    PubMed  Google Scholar 

  • Cruccu, G., & Deuschl, G. (2000). The clinical use of brainstem reflexes and hand-muscle reflexes. Clinical Neurophysiology, 111(3), 371–387.

    PubMed  Google Scholar 

  • Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233.

    PubMed  PubMed Central  Google Scholar 

  • Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 11730–11737.

    PubMed  Google Scholar 

  • DeGiorgio, C. M., Fanselow, E. E., Schrader, L. M., & Cook, I. A. (2011). Trigeminal nerve stimulation: Seminal animal and human studies for epilepsy and depression. Neurosurgery Clinics of North America, 22(4), 449–456.

    PubMed  Google Scholar 

  • DeGiorgio, C. M., Murray, D., Markovic, D., & Whitehurst, T. (2009). Trigeminal nerve stimulation for epilepsy: Long-term feasibility and efficacy. Neurology, 72(10), 936–938.

    PubMed  Google Scholar 

  • DeGiorgio, C. M., Schachter, S. C., Handforth, A., Salinsky, M., Thompson, J., Uthman, B., … & Vaughn, B. (2000). Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia, 41(9), 1195–1200.

    Google Scholar 

  • DeGiorgio, C. M., Shewmon, A., Murray, D., & Whitehurst, T. (2006). Pilot study of trigeminal nerve stimulation (TNS) for epilepsy: A proof-of-concept trial. Epilepsia, 47(7), 1213–1215.

    PubMed  Google Scholar 

  • DeGiorgio, C. M., Shewmon, D. A., & Whitehurst, T. (2003). Trigeminal nerve stimulation for epilepsy. Neurology, 61(3), 421–422.

    PubMed  Google Scholar 

  • DeGiorgio, C. M., Soss, J., Cook, I. A., Markovic, D., Gornbein, J., Murray, D., … & Heck, C. N. (2013). Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology, 80(9), 786–791.

    Google Scholar 

  • Di Lazzaro, V., Oliviero, A., Meglio, M., Cioni, B., Tamburrini, G., Tonali, P., et al. (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clinical Neurophysiology, 111(5), 794–799.

    PubMed  Google Scholar 

  • Dieb, W., & Hafidi, A. (2015). Mechanism of GABA involvement in post-traumatic trigeminal neuropathic pain: Activation of neuronal circuitry composed of PKCγ interneurons and pERK1/2 expressing neurons. European Journal of Pain, 19(1), 85–96.

    PubMed  Google Scholar 

  • Dietrich, S., Smith, J., Scherzinger, C., Hofmann-Preiß, K., Freitag, T., Eisenkolb, A., et al. (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI/Funktionelle Magnetresonanztomographie zeigt Aktivierungen des Hirnstamms und weiterer zerebraler Strukturen unter transkutaner Vagusnervstimulation. Biomedizinische Technik/Biomedical Engineering, 53(3), 104–111.

    PubMed  Google Scholar 

  • Dorr, A. E., & Debonnel, G. (2006). Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. Journal of Pharmacology and Experimental Therapeutics, 318, 890–898.

    PubMed  Google Scholar 

  • Fallgatter, A. J., Ehlis, A. C., Ringel, T. M., & Herrmann, M. J. (2005). Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. International Journal of Psychophysiology, 56(1), 37–43.

    PubMed  Google Scholar 

  • Fallgatter, A. J., Neuhauser, B., Herrmann, M. J., Ehlis, A. C., Wagener, A., Scheuerpflug, P., … & Riederer, P. (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Journal of Neural Transmission, 110(12), 1437–1443.

    Google Scholar 

  • Fanselow, E. (2012). Central mechanisms of cranial nerve stimulation for epilepsy. Surgical Neurology International, 3, 247.

    Google Scholar 

  • Follesa, P., Biggio, F., Gorini, G., Caria, S., Talani, G., Dazzi, L., … & Biggio, G. (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Research, 1179, 28–34.

    Google Scholar 

  • Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624–636.

    PubMed  Google Scholar 

  • Gehring, W. J., & Fencsik, D. E. (2001). Functions of the medial frontal cortex in the processing of conflict and errors. Journal of Neuroscience, 21, 9430–9437.

    PubMed  Google Scholar 

  • George, M. S., & Aston-Jones, G. (2010). Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology, 35, 301–316.

    PubMed  Google Scholar 

  • Grimonprez, A., Raedt, R., Baeken, C., Boon, P., & Vonck, K. (2015). The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neuroscience and Biobehavioral Reviews, 56, 26–34.

    PubMed  Google Scholar 

  • Hassert, D. L., Miyashita, T., & Williams, C. L. (2004). The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behavioral Neuroscience, 118, 79–88.

    PubMed  Google Scholar 

  • Jacobs, H. I., Riphagen, J. M., Razat, C. M., Wiese, S., & Sack, A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiology of Aging, 36(5), 1860–1867.

    PubMed  Google Scholar 

  • King, J. A., Korb, F. M., Von Cramon, D. Y., & Ullsperger, M. (2010). Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. Journal of Neuroscience, 30, 12759–12769.

    PubMed  Google Scholar 

  • Krämer, U. M., Cunillera, T., Camara, E., Marco-Pallares, J., Cucurell, D., Nager, W., et al. (2007). The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. Journal of Neuroscience, 27, 14190–14198.

    PubMed  Google Scholar 

  • Kraus, T., Hösl, K., Kiess, O., Schanze, A., Kornhuber, J., & Forster, C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. Journal of Neural Transmission, 114(11), 1485–1493.

    PubMed  Google Scholar 

  • Kraus, T., Kiess, O., Hösl, K., Terekhin, P., Kornhuber, J., & Forster, C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal—A pilot study. Brain Stimulation, 6(5), 798–804.

    PubMed  Google Scholar 

  • Kreuzer, P. M., Landgrebe, M., Husser, O., Resch, M., Schecklmann, M., Geisreiter, F., et al. (2012). Transcutaneous vagus nerve stimulation: Retrospective assessment of cardiac safety in a pilot study. Frontiers in Psychiatry, 3, 70.

    PubMed  PubMed Central  Google Scholar 

  • MacDonald, S. W., Nyberg, L., & Bäckman, L. (2006). Intra-individual variability in behavior: Links to brain structure, neurotransmission and neuronal activity. Trends in Neurosciences, 29(8), 474–480.

    PubMed  Google Scholar 

  • Marrosu, F., Serra, A., Maleci, A., Puligheddu, M., Biggio, G., & Piga, M. (2003). Correlation between GABA A receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Research, 55(1), 59–70.

    PubMed  Google Scholar 

  • McIntyre, C. K., McGaugh, J. L., & Williams, C. L. (2012). Interacting brain systems modulate memory consolidation. Neuroscience and Biobehavioral Reviews, 36(7), 1750–1762.

    PubMed  Google Scholar 

  • Mercante, B., Pilurzi, G., Ginatempo, F., Manca, A., Follesa, P., Tolu, E., et al. (2015). Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans. Experimental Brain Research, 233(11), 3301–3311.

    PubMed  Google Scholar 

  • Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clinical Anatomy, 15, 35–37.

    PubMed  Google Scholar 

  • Pilurzi, G., Mercante, B., Ginatempo, F., Follesa, P., Tolu, E., & Deriu, F. (2016). Transcutaneous trigeminal nerve stimulation induces a long-term depression-like plasticity of the human blink reflex. Experimental Brain Research, 234(2), 453–461.

    PubMed  Google Scholar 

  • Pop, J., Murray, D., Markovic, D., & DeGiorgio, C. M. (2011). Acute and long-term safety of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy & Behavior, 22(3), 574–576.

    Google Scholar 

  • Rabbitt, P. M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71(2), 264.

    PubMed  Google Scholar 

  • Raedt, R., Clinckers, R., Mollet, L., Vonck, K., El Tahry, R., Wyckhuys, T., … & Meurs, A. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. Journal of Neurochemistry, 117, 461–469.

    Google Scholar 

  • Roosevelt, R. W., Smith, D. C., Clough, R. W., Jensen, R. A., & Browning, R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Research, 1119, 124–132.

    PubMed  PubMed Central  Google Scholar 

  • Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211–223.

    PubMed  Google Scholar 

  • Sellaro, R., van Leusden, J. W., Tona, K. D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances post-error slowing. Journal of Cognitive Neuroscience, 27, 2126–2132.

    PubMed  Google Scholar 

  • Shiozawa, P., Silva, M. E. D., Carvalho, T. C. D., Cordeiro, Q., Brunoni, A. R., & Fregni, F. (2014). Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: A systematic review. Arquivos de Neuro-Psiquiatria, 72(7), 542–547.

    PubMed  Google Scholar 

  • Shiozawa, P., Silveira, J. G., Soares, A., Taiar, I., Trevizol, A., Dias, Á. M., et al. (2016). Electroencephalographic changes following a trigeminal nerve stimulation (TNS) protocol: Assessing a novel depression treatment. Epilepsy & Behavior, 58, 141–142.

    Google Scholar 

  • Sperling, W., Reulbach, U., Bleich, S., Padberg, F., Kornhuber, J., & Mueck-Weymann, M. (2010). Cardiac effects of vagus nerve stimulation in patients with major depression. Pharmacopsychiatry, 43, 7–11.

    PubMed  Google Scholar 

  • Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. European Neuropsychopharmacology, 25(6), 773–778.

    PubMed  Google Scholar 

  • Treiman, D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia, 42, 8–12.

    PubMed  Google Scholar 

  • Tyler, W. J., Boasso, A. M., Mortimore, H. M., Silva, R. S., Charlesworth, J. D., Marlin, M. A., … & Pal, S. K. (2015). Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans. Scientific Reports, 5: 13865.

    Google Scholar 

  • Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214(5–6), 629–643.

    PubMed  Google Scholar 

  • Van Bockstaele, E. J., Peoples, J., & Telegan, P. (1999). Efferent projections of the nucleus of the solitary tract to peri‐locus coeruleus dendrites in rat brain: Evidence for a monosynaptic pathway. Journal of Comparative Neurology, 412(3), 410–428.

    Google Scholar 

  • van Leusden, J. W., Sellaro, R., & Colzato, L. S. (2015). Transcutaneous Vagal Nerve Stimulation (tVNS): A new neuromodulation tool in healthy humans? Frontiers in Psychology, 6, 102.

    PubMed  PubMed Central  Google Scholar 

  • Ventureyra, E. C. (2000). Transcutaneous vagus nerve stimulation for partial onset seizure therapy. Child’s Nervous System, 16(2), 101–102.

    PubMed  Google Scholar 

  • Vonck, K., Raedt, R., Naulaerts, J., De Vogelaere, F., Thiery, E., Van Roost, D., … & Boon, P. (2014). Vagus nerve stimulation… 25 years later! What do we know about the effects on cognition? Neuroscience & Biobehavioral Reviews, 45, 63–71.

    Google Scholar 

  • Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482.

    Google Scholar 

  • Yildiz, A., Quetscher, C., Dharmadhikari, S., Chmielewski, W., Glaubitz, B., Schmidt-Wilcke, T., … Beste, C. (2014). Feeling safe in the plane: Neural mechanisms underlying superior action control in airplane pilot trainees—a combined EEG/MRS study. Human Brain Mapping. 35, 5040–5051.

    Google Scholar 

  • Zuo, Y., Smith, D. C., & Jensen, R. A. (2007). Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiology & Behavior, 90(4), 583–589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza S. Colzato .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Colzato, L.S., Vonck, K. (2017). Transcutaneous Vagus and Trigeminal Nerve Stimulation. In: Theory-Driven Approaches to Cognitive Enhancement. Springer, Cham. https://doi.org/10.1007/978-3-319-57505-6_9

Download citation

Publish with us

Policies and ethics