Skip to main content

Robotic Grasp Stability Analysis Using Extreme Learning Machine

  • Conference paper
  • First Online:
Proceedings of ELM-2016

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 9))

Abstract

Recently, autonomous grasping of unknown objects is a fundamental requirement for robots performing manipulation tasks in real world environments. It is still considered as a challenging problem no matter how process we have made. It is significant that how the robot to judge the stability of grabbing object. In this paper, we analyze the data through process of grabbing 3 objects whether is successful or failed by constructing Global Alignment kernel with Extreme Learning Machine and Support Vector Machine. For comparative analysis, the Barrett hand’s finger angles and robot joint angles are also recorded. By processing obtained data in different ways, we have comparative results in various modes. Experiments denote the tactile results achieve better performance than the finger angle’s and robot joint angle’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohg, J., et al.: Data-Driven Grasp Synthesis—A Survey. IEEE Trans. Rob. 30(2), 289–309 (2013)

    Article  Google Scholar 

  2. Cutkosky, M.R., et al.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)

    Article  Google Scholar 

  3. Myeong, E., et al.: A new method for grasp stability analysis. In: Wseas International Conference on Signal Processing World Scientific and Engineering Academy and Society, pp. 164–170 (2007)

    Google Scholar 

  4. Funahashi, Y., et al.: Grasp stability analysis considering the curvatures at contact points. IEEE Int. Conf. Robot. Autom. 4, 3040–3046 (1996)

    Article  Google Scholar 

  5. Jenmalm, P., et al.: Control of grasp stability when humans lift objects with different surface curvatures. J. Neurophysiol. 79(4), 1643–1652 (1998)

    Google Scholar 

  6. Howard, W.S., et al.: On the stability of grasped objects. IEEE Trans. Robot. Autom. 12(6), 904–917 (1996)

    Article  Google Scholar 

  7. Yamada, T., et al.: Stability analysis of 3D grasps by a multifingered hand. IEEE Int. Conf. Robot. Autom. 2466–2473 (2000)

    Google Scholar 

  8. Yamada, T., et al.: Grasp stability analysis of two objects in two dimensions. IEEE Int. Conf. Robot. Autom. 760–765 (2005)

    Google Scholar 

  9. Sudsang, A., et al.: Geometric reformulation of 3-fingered force-closure condition. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2338–2343 (2005)

    Google Scholar 

  10. Huang, G.B., et al.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybernet. 2(2), 107–122 (2011)

    Article  Google Scholar 

  11. Huang, G.B., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879–892 (2006)

    Article  Google Scholar 

  12. Huang, G.B., et al.: Extreme learning machine: theory and applications. Neurocomputing 70(1-3), 489–501 (2006)

    Article  Google Scholar 

  13. Widrow, B., et al.: The no-prop, algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. Off. J. Int. Neural Netw. Soc. 37(1), 182–188 (2012)

    Google Scholar 

  14. Wettels, N., et al.: Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)

    Article  Google Scholar 

  15. Johansson, R.S., et al.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  16. Madry, M., et al.: ST-HMP: unsupervised spatio-temporal feature learning for tactile data. IEEE Int. Conf. Robot. Autom. 2262–2269 (2014)

    Google Scholar 

  17. Su, Z., et al.: Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. In: IEEE International Conference on Humanoid Robots, pp. 297–303 (2015)

    Google Scholar 

  18. Chebotar, Y., et al.: Bigs: biotac grasp stability dataset. In: ICRA 2016 Workshop on Grasping and Manipulation Datasets (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Project for Basic Research, China, under Grant 2013CB329403, in part by the National Natural Science Foundation of China under Grants 61673238, 91420302 and 61327809, and in part by the National High-Tech Research and Development Plan under Grant 2015AA042306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bai, P., Liu, H., Sun, F., Gao, M. (2018). Robotic Grasp Stability Analysis Using Extreme Learning Machine. In: Cao, J., Cambria, E., Lendasse, A., Miche, Y., Vong, C. (eds) Proceedings of ELM-2016. Proceedings in Adaptation, Learning and Optimization, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-57421-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57421-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57420-2

  • Online ISBN: 978-3-319-57421-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics