Skip to main content

Passivity of Iron—A Review

  • Chapter
  • First Online:
Electrochemical Science for a Sustainable Society
  • 1098 Accesses

Abstract

The passive film on iron has provided positive benefits to the longevity of iron structures since antiquity. As the benefits of passivity of iron became recognized, debates among scientists developed over the possible mechanisms by which the very thin (2–3 nm) passive layer could impart substantive corrosion resistance. The mechanisms of passivity that impart unique properties to passive iron have been studied and debated for decades. In recent years, equipment that is sufficiently advanced for surface studies at an atomic level has been used to explore the mechanisms of passivity and, in combination with electrochemical studies, to characterize the chemical composition, physical structure, and electronic properties of the passive film on iron. The evolution of the concepts and theories of the passivity of iron are reviewed in this paper, beginning with the earliest observations and summarizing the developments that have become possible as a result of advances in instrumentation and surface analytical methods. Effects of temperature, texture, and hydrodynamics on the mechanisms of passivity of iron are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Revie RW, Uhlig HH (2008) Corrosion and corrosion control, an introduction to corrosion science and engineering, 4th edn. NJ, Wiley, Hoboken, p 84

    Google Scholar 

  2. Frankenthal RP (1971) Passivation of iron in borate buffer solution. Electrochim Acta 16:1845–1857

    Article  CAS  Google Scholar 

  3. Sato N (1990) An overview on the passivity of metals. Corros Sci 31:1–19

    Article  CAS  Google Scholar 

  4. Kruger J (1989) The nature of the passive film on iron and ferrous alloys. Corros Sci 29:149–162

    Article  CAS  Google Scholar 

  5. Cáceres L, Soliz A, Vargas T (2016) Potentiodynamic behavior of carbon steel in borate buffer solutions under different hydrodynamic conditions. J Electrochem Soc 163(5):C171–C183

    Article  Google Scholar 

  6. Revie RW, Uhlig HH (2008) Corrosion and corrosion control, an introduction to corrosion science and engineering, 4th edn. Wiley, Hoboken, NJ, pp 83–111

    Google Scholar 

  7. Strehblow H-H (2016) Passivity of metals studied by surface analytical methods, a review. Electrochim Acta 212:630–648

    Article  CAS  Google Scholar 

  8. Keir J (1790) Philos Trans 80:374

    Google Scholar 

  9. Schönbein C (1836) About the behavior of tin and iron from the nitric acid. Pogg Ann 37:390–399

    Google Scholar 

  10. Schönbein C, Faraday M (1836) Phil Mag 9(53):56

    Google Scholar 

  11. Revie RW, Uhlig HH (2008) Corrosion and corrosion control, an introduction to corrosion science and engineering, 4th edn. Wiley, Hoboken, p 92

    Google Scholar 

  12. Nagayama M, Cohen M (1962) The anodic oxidation of iron in a neutral solution. I. The nature and composition of the passive film. J Electrochem Soc 109(2):781–790

    Article  CAS  Google Scholar 

  13. Sato N, Cohen M (1964) The kinetics of anodic oxidation of iron in neutral solution. I. Steady growth region. J Electrochem Soc 111(5):512–519

    Article  CAS  Google Scholar 

  14. Uhlig H (1967) Structure and growth of thin films on metals exposed to oxygen. Corros Sci 7:325–339

    Article  CAS  Google Scholar 

  15. Revie RW, Uhlig HH (2008) Corrosion and corrosion control, an introduction to corrosion science and engineering, 4th edn. Wiley, Hoboken, NJ, pp 92–96

    Google Scholar 

  16. Franck UF (1949) The anodic behavior of iron in sulfuric acid. Z Naturforschung 4A:378–391

    CAS  Google Scholar 

  17. Revie RW, Baker BG, Bockris JO’M (1975) The passive film on iron: an application of Auger electron spectroscopy. J Electrochem Soc 122(11):1460–1466

    Google Scholar 

  18. O’Grady WE, Bockris JO’M (1973) Interpretation of Mössbauer spectra of passive films on metals. Surface Sci 38:249–251

    Google Scholar 

  19. O’Grady WE (1973) Ph.D. Thesis, University of Pennsylvania

    Google Scholar 

  20. Chao CY, Lin LF, Macdonald DD (1981) A point defect model for anodic passive films. I. Film growth kinetics. J Electrochem Soc 128(6):1187–1194

    Article  CAS  Google Scholar 

  21. Macdonald DD, Biaggio SR, Song H (1992) Steady-State passive films: interfacial kinetic effects and diagnostic criteria. J Electrochem Soc 139(1):170–177

    Article  CAS  Google Scholar 

  22. Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139(12):3434–3449

    Article  CAS  Google Scholar 

  23. Macdonald DD (1999) Passivity—the key to our metals-based civilization. Pure Appl Chem 71(6):951–978

    Article  CAS  Google Scholar 

  24. Goswami KN, Staehle RW (1971) Growth kinetics of passive films on Fe, Fe-Ni, Fe-Cr, Fe-Cr-Ni alloys. Electrochim Acta 16:1895–1907

    Article  CAS  Google Scholar 

  25. Lukac C, Lumsden JB, Smialowska S, Staehle RW (1975) Effects of temperature on the kinetics of passive film growth on iron. J Electrochem Soc 122:1571–1579

    Article  CAS  Google Scholar 

  26. Sato N, Noda T, Kudo K (1974) Thickness and structure of passive films on iron in acidic and basic solution. Electrochim Acta 19:471–475

    Article  CAS  Google Scholar 

  27. Davenport AJ, Bardwell JA, Vitus CM (1995) In situ XANES study of galvanostatic reduction of the passive film on iron. J Electrochem Soc 142(3):721–724

    Article  CAS  Google Scholar 

  28. Sieber IV, Hildebrand H, Virtanen S, Schmuki P (2006) Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4. Corros Sci 48:3472–3488

    Article  CAS  Google Scholar 

  29. Ryan MP, Newman RC, Thompson GE (1995) J Electrochem Soc 142(10):L177–L179

    Article  CAS  Google Scholar 

  30. Davenport AJ, Oblonsky LJ, Ryan MP, Toney MF (2000) J Electrochem Soc 147(6):2162

    Article  CAS  Google Scholar 

  31. Strehblow H-H, Marcus P (2006) X-ray photoelectron spectroscopy in corrosion research. In: Marcus P, Mansfeld F (eds) Analytical methods in corrosion science and engineering. CRC Taylor & Francis, Boca Raton, FL, pp 1–37

    Google Scholar 

  32. Olsson C-OA, Landolt D (2006) Electrochemical quartz crystal microbalance. In: Marcus P, Mansfeld F (eds) Analytical methods in corrosion science and engineering. CRC Taylor & Francis, Boca Raton, FL, pp 733–751

    Google Scholar 

  33. Seo M, Yoshida K, Noda K (1995) An EQCM study on corrosion of iron thin film in deaerated neutral solutions. Mat Sci Forum 192–194:755–764

    Article  Google Scholar 

  34. Schmutz P, Landolt D (1999) In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe-25Cr and Fe-17Cr-33Mo in acid and alkaline solution. Corros Sci 41:2143–2163

    Article  CAS  Google Scholar 

  35. Hamm D, Ogle K, Olsson C-OA, Weber S, Landolt D (2002) Passivation of Fe-Cr alloys studied with ICP-AES and EQCM. Corros Sci 44:1443–1456

    Article  CAS  Google Scholar 

  36. Schmutz P, Landolt D (1999) Electrochemical quartz crystal microbalance study of the transient response of passive Fe-25Cr alloy. Electrochim Acta 45:899–911

    Article  CAS  Google Scholar 

  37. Takabatake Y, Fushimi K, Nakanishi T, Hasegawa Y (2014) Grain-dependent passivation of iron in sulfuric acid solution. J Electrochem Soc 161(14):C594–C600

    Article  CAS  Google Scholar 

  38. Yamamoto T, Fushimi K, Miura S, Konno H (2010) Influence of substrate dislocation on passivation of pure iron in pH 8.4 borate buffer solution. J Electrochem Soc 157(7):C231–C237

    Article  CAS  Google Scholar 

  39. Deng H, Qian P, Sanada N, Yoneya M, Nanjo H (2003) Temperature dependence of surface crystal structures of iron passivated at −400 mV in a borate buffer solution. J Electrochem Soc 150(7):B336–B341

    Article  CAS  Google Scholar 

  40. Lukac C, Lumsden JB, Smialowska S, Staehle RW (1975) Effects of temperature on the kinetics of passive film growth on iron. J Electrochem Soc 122(12):1571–1579

    Article  CAS  Google Scholar 

  41. Büchler M, Schmuki P, Böhni H (1998) Iron passivity in borate buffer: formation of a deposit layer and its influence on the semiconducting properties. J Electrochem Soc 145(2):609–614

    Article  Google Scholar 

  42. Cáceres L, Soliz A, Vargas T (2016) Potentiodynamic behavior of carbon steel in borate buffer solutions under different hydrodynamic conditions. J Electrochem Soc 163(5):C171–C183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Winston Revie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Revie, R.W. (2017). Passivity of Iron—A Review. In: Uosaki, K. (eds) Electrochemical Science for a Sustainable Society. Springer, Cham. https://doi.org/10.1007/978-3-319-57310-6_9

Download citation

Publish with us

Policies and ethics