Skip to main content

Morphological Analysis of Brownian Motion for Physical Measurements

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2017)

Abstract

Brownian motion is a well-known, apparently chaotic motion affecting microscopic objects in fluid media. The mathematical and physical basis of Brownian motion have been well studied but not often exploited. In this article we propose a particle tracking methodology based on mathematical morphology, suitable for Brownian motion analysis, which can provide difficult physical measurements such as the local temperature and viscosity. We illustrate our methodology on simulation and real data, showing that interesting phenomena and good precision can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, R.: A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. 4(21), 161–173 (1827)

    Google Scholar 

  2. Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys. 322(8), 549–560 (1905)

    Article  MATH  Google Scholar 

  3. Perrin, J.: Mouvement brownien et réalité moléculaire. Ann. Chim. Phys. 18(8), 5–114 (1909)

    Google Scholar 

  4. Bachelier, L.: Théorie de la spéculation. Ann. Sci. l’École Normale Supér. 3(17), 21–86 (1900)

    Article  MATH  Google Scholar 

  5. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38(1/2), 196–218 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colding, E., et al.: Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008)

    Article  Google Scholar 

  7. De Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  8. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  9. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  10. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  12. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM (JACM) 51(4), 540–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Park, J., Choi, C., Kihm, K.: Temperature measurement for a nanoparticle suspension by detecting the Brownian motion using optical serial sectioning microscopy (OSSM). Meas. Sci. Technol. 16(7), 1418 (2005)

    Article  Google Scholar 

  14. Donsker, M.: An invariance principle for certain probability limit theorems. Mem. Am. Math. Soc. 6 (1951)

    Google Scholar 

  15. Pólya, G.: Über eine aufgabe betreffend die irrfahrt im strassennetz. Math. Ann. 84, 149–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nordlund, K.: Basics of Monte Carlo simulations. http://www.acclab.helsinki.fi/~knordlun/mc/mc5nc.pdf

  17. Gaber, N., Malak, M., Marty, F., Angelescu, D.E., Richalot, E., Bourouina, T.: Optical trapping and binding of particles in an optofluidic stable fabry-pérot resonator with single-sided injection. Lab Chip 14(13), 2259–2265 (2014)

    Article  Google Scholar 

  18. Allan, D., et al.: Trackpy: fast, flexible particle-tracking toolkit. http://soft-matter.github.io/trackpy

  19. Najman, L., Talbot, H. (eds.): Mathematical Morphology: from Theory to Applications. ISTE-Wiley, London, September 2010. ISBN 978-1848212152

    Google Scholar 

  20. Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)

    Article  Google Scholar 

  21. Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proceedings of the Conference on Mathematical Morphology and Its Applications to Signal Processing, Barcelona, Spain, pp. 22–27, May 1993

    Google Scholar 

  22. Meijster, A., Wilkinson, H.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)

    Article  Google Scholar 

  23. Géraud, T., Talbot, H., Vandroogenbroeck, M.: Algorithms for mathematical morphology. In: [19] Chap. 12, pp. 323–354. ISBN 978-1848212152

    Google Scholar 

  24. Bertrand, G., Couprie, M.: Transformations topologiques discretes. In: Coeurjolly, D., Montanvert, A., Chassery, J. (eds.) Géométrie discrète et images numériques, pp. 187–209. Hermès, Mumbai (2007)

    Google Scholar 

  25. Matheron, G.: The Theory of Regionalized Variables and Its Applications, vol. 5. École national supérieure des mines, Paris (1971)

    Google Scholar 

  26. Olea, R.A.: Optimal contour mapping using universal kriging. J. Geophys. Res. 79(5), 695–702 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Talbot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Puybareau, É., Talbot, H., Gaber, N., Bourouina, T. (2017). Morphological Analysis of Brownian Motion for Physical Measurements. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics