Skip to main content

Epileptic Encephalopathies as Neurodegenerative Disorders

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

The epileptic encephalopathies are severe and often treatment-resistant conditions that are associated with a progressive disturbance of brain function, resulting in a broad range of neurological and non-neurological comorbidities. The concept of epileptic encephalopathies entails that the encephalopathy aspect of the overall condition is primarily driven by the epileptic activity of the disease, which often manifests as specific and pathological features on the electroencephalogram. Genetic factors in epileptic encephalopathies are increasingly recognized. As of 2016, more than 30 genes have been securely implicated as causative genes for genetic epileptic encephalopathies. Even though the traditional concept of epileptic encephalopathies entails that the progressive disturbance of brain dysfunction is primarily due to the abnormal hypersynchronous activity that underlies the seizure disorders, this strict concept rarely holds true for patients with identified genetic etiologies. More commonly, an underlying genetic etiology is thought to predispose both to the neurodevelopmental comorbidities and to the seizure phenotype with a complex interaction between both. In this chapter, we will elucidate to what extent neurodegeneration rather than epilepsy-related regression is a feature of the common epileptic encephalopathies, drawing parallels between two relatively separate fields of neurogenetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Agenesis of the corpus callosum

CA1/CA3:

Cornu Ammonis 1/3

CNS:

Central nervous system

CSWS:

Continuous spike-wave activity in slow-wave sleep

EEG:

Electroencephalography

FTD:

Frontotemporal dementia

GABA:

Gamma-aminobutyric acid

GGE:

Genetic generalized epilepsy

GSW:

Generalized spike-wave

HSP:

Hereditary spastic paraplegia

hyperKPP:

Hyperkalemic periodic paralysis

IGE:

Idiopathic generalized epilepsy

INAD:

Infantile neuroaxonal dystrophy

iPSCs:

Induced pluripotent stem cells

iPSP:

Inhibitory postsynaptic potential

JAE:

Juvenile absence epilepsy

JME:

Juvenile myoclonic epilepsy

MRI:

Magnetic resonance imaging

mRNA:

Messenger ribonucleic acid

NBIA:

Neurodegeneration with brain iron accumulation

NCL:

Neuronal ceroid lipofuscinosis

PKAN:

Pantothenate kinase-associated neurodegeneration

PME:

Progressive myoclonus epilepsy

SENDA:

Static encephalopathy with neurodegeneration in adulthood

ULD:

Unverricht-Lundborg disease

XLAG:

X-linked lissencephaly with abnormal genitalia

References

  1. Lewis DV et al (2014) Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol 75:178–185

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pitkänen A, Immonen RJ, Gröhn OHJ, Kharatishvili I (2009) From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia 50(Suppl 2):21–29

    Article  PubMed  Google Scholar 

  3. Coulter DA et al (1996) Brain injury-induced enhanced limbic epileptogenesis: anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res 26:81–91

    Article  CAS  PubMed  Google Scholar 

  4. Gorter JA, van Vliet EA, Lopes da Silva FH (2016) Which insights have we gained from the kindling and post-status epilepticus models? J Neurosci Methods 260:96–108

    Article  PubMed  Google Scholar 

  5. Raol YSH, Budreck EC, Brooks-Kayal AR (2003) Epilepsy after early-life seizures can be independent of hippocampal injury. Ann Neurol 53:503–511

    Article  PubMed  Google Scholar 

  6. Yu FH et al (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149

    Article  CAS  PubMed  Google Scholar 

  7. Price MG et al (2009) A triplet repeat expansion genetic mouse model of infantile spasms syndrome Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 29:8752–8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Claes L et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sugawara T et al (2002) Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology 58:1122–1124

    Article  CAS  PubMed  Google Scholar 

  10. Dravet C (2011) The core Dravet syndrome phenotype. Epilepsia 52:3–9

    Article  PubMed  Google Scholar 

  11. Helbig KL et al (2016) Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 18:1–8

    Google Scholar 

  12. Steinlein OK et al (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11:201–203

    Article  CAS  PubMed  Google Scholar 

  13. Singh N et al (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:231–236

    Article  Google Scholar 

  14. Biervert C (1998) A potassium channel mutation in neonatal human epilepsy. Science 279(5349):403–406

    Article  CAS  PubMed  Google Scholar 

  15. Wallace RH et al (1998) Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 19:366–370

    Article  CAS  PubMed  Google Scholar 

  16. Allen AS et al (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221

    Article  CAS  PubMed  Google Scholar 

  17. De Rubeis S et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakamura K et al (2013) Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81:992–998

    Article  CAS  PubMed  Google Scholar 

  19. Carvill GL et al (2014) GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 82:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. EuroEPINOMICS-RES Consortium EP, Genome Project EC (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 95:360–370

    Article  Google Scholar 

  21. Ptáček LJ et al (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67:1021–1027

    Article  PubMed  Google Scholar 

  22. Ptáček LJ (1997) Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous system. Neuromuscul Disord 7:250–255

    Article  PubMed  Google Scholar 

  23. Depienne C et al (2009) Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 46:183–191

    Article  CAS  PubMed  Google Scholar 

  24. Djémié T et al (2016) Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol Genet Genomic Med 4:457–464

    Google Scholar 

  25. Meng H et al (2015) The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 36:573–580

    Article  CAS  PubMed  Google Scholar 

  26. Beckh S, Noda M, Lübbert H, Numa S (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8:3611–3616

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y et al (2013) Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 74:128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Stasi AM et al (2016) Unaltered network activity and interneuronal firing during spontaneous cortical dynamics in vivo in a mouse model of severe myoclonic epilepsy of infancy. Cereb Cortex 26:1778–1794

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saitsu H et al (2012) Whole exome sequencing identifies KCNQ2 mutations in ohtahara syndrome. Ann Neurol 72:298–298

    Article  CAS  PubMed  Google Scholar 

  30. Weckhuysen S et al (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25

    Article  CAS  PubMed  Google Scholar 

  31. Barcia G et al (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 44:1255–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weckhuysen S et al (2013) Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81:1697–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larsen J et al (2015) The phenotypic spectrum of SCN8A encephalopathy. Neurology 84:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saitsu H et al (2008) De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 40:782–788

    Article  CAS  PubMed  Google Scholar 

  35. Deprez L et al (2010) Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology 75:1159–1165

    Article  CAS  PubMed  Google Scholar 

  36. Mignot C et al (2011) STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia 52:1820–1827

    Article  CAS  PubMed  Google Scholar 

  37. Milh M et al (2011) Epileptic and nonepileptic features in patients with early onset epileptic encephalopathy and STXBP1 mutations. Epilepsia 52:1828–1834

    Article  PubMed  Google Scholar 

  38. Swanson DA, Steel JM, Valle D (1998) Identification and characterization of the human ortholog of rat STXBP1, a protein implicated in vesicle trafficking and neurotransmitter release. Genomics 48:373–376

    Article  CAS  PubMed  Google Scholar 

  39. Fukata Y et al (2010) Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A 107:3799–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fassio A et al (2011) SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20:2297–2307

    Article  CAS  PubMed  Google Scholar 

  41. Lignani G et al (2013) Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22:2186–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stamberger H et al (2016) STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology 86:954–962

    Article  CAS  PubMed  Google Scholar 

  43. Boumil RM et al (2010) A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet 6:1–14

    Article  Google Scholar 

  44. Ferguson SM et al (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316(80):570–574

    Article  CAS  PubMed  Google Scholar 

  45. Hayashi et al (2008) Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc Natl Acad Sci U S A 105:2175–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dhindsa RS et al (2015) Epileptic encephalopathy-causing mutations in DNM1 impair synaptic vesicle endocytosis. Neurol Genet 1:1–9

    Article  Google Scholar 

  47. Kato M, Dobyns WB (2005) X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, ‘interneuronopathy’. J Child Neurol 20:392–397

    Article  PubMed  Google Scholar 

  48. Kitamura K et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369

    Article  CAS  PubMed  Google Scholar 

  49. Kato M et al (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 23:147–159

    Article  CAS  PubMed  Google Scholar 

  50. Shoubridge C, Fullston T, Gécz J (2010) ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 31:889–900

    Article  CAS  PubMed  Google Scholar 

  51. Fulp CT et al (2008) Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 17:3740–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Colasante G et al (2008) Arx is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons. J Neurosci 28:10674–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Colasante G et al (2009) Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Dev Biol 334:59–71

    Article  CAS  PubMed  Google Scholar 

  54. Colasante G et al (2015) ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb Cortex 25:322–335

    Article  PubMed  Google Scholar 

  55. Friocourt (2010) Mutations in ARX result in several defects involving GABAergic neurons. Front Cell Neurosci 4:1–11

    Google Scholar 

  56. Colombo E, Galli R, Cossu G, Gécz J, Broccoli V (2004) Mouse orthologue of ARX, a gene mutated in several x-linked forms of mental retardation and epilepsy, is a marker adult neural stem cells and forebrain GABAergi neurons. Dev Dyn 231:631–639

    Article  CAS  PubMed  Google Scholar 

  57. Cobos I, Broccoli V, Rubenstein JLR (2005) The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J Comp Neurol 483:292–303

    Article  CAS  PubMed  Google Scholar 

  58. Poirier K et al (2004) Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Mol Brain Res 122:35–46

    Article  CAS  PubMed  Google Scholar 

  59. Wilcox CL, Terry NA, Walp ER, Lee RA, May CL (2013) Pancreatic α-cell specific deletion of mouse arx leads to α-cell identity loss. PLoS One 8:e66214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilcox CL, Terry NA, May CL (2013) Arx polyalanine expansion in mice leads to reduced pancreatic α-cell specification and increased α-cell death. PLoS One 8:1–8

    Google Scholar 

  61. Simonet JC, Sunnen CN, Wu J, Golden JA, Marsh ED (2015) Conditional loss of arx from the developing dorsal telencephalon results in behavioral phenotypes resembling mild human ARX mutations. Cereb Cortex 25:2939–2950

    Article  PubMed  Google Scholar 

  62. Bourgeois EB et al (2014) A toolbox for spatiotemporal analysis of voltage-sensitive dye imaging data in brain slices. PLoS One 9:1–15

    Google Scholar 

  63. Zhou B et al (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349

    Article  CAS  PubMed  Google Scholar 

  64. Hayflick SJ et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    Article  CAS  PubMed  Google Scholar 

  65. Morgan NV et al (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38:752–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haack TB et al (2012) Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 91:1144–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saitsu H et al (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45:445–449

    Article  CAS  PubMed  Google Scholar 

  68. Ebrahimi-Fakhari D et al (2015) Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 139:317–337

    Article  PubMed  Google Scholar 

  69. Kruer MC et al (2012) Neuroimaging features of neurodegeneration with brain iron accumulation. Am J Neuroradiol 33:407–414

    Article  CAS  PubMed  Google Scholar 

  70. Hayflick SJ et al (2013) Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain 136:1708–1717

    Article  PubMed  PubMed Central  Google Scholar 

  71. Srivastava S et al (2014) Clinical whole exome sequencing in child neurology practice. Ann Neurol 76:473–483

    Article  PubMed  Google Scholar 

  72. Gilissen C et al (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511:344–347

    Article  CAS  PubMed  Google Scholar 

  73. Abidi A et al (2015) Early-onset epileptic encephalopathy as the initial clinical presentation of WDR45 deletion in a male patient. Eur J Hum Genet 33:1–4

    Google Scholar 

  74. Pennacchio LA et al (1996) Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271:1731–1734

    Article  CAS  PubMed  Google Scholar 

  75. Lalioti M et al (1997) Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386:847–851

    Article  CAS  PubMed  Google Scholar 

  76. Bassuk AG et al (2008) A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet 83:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berkovic SF et al (2008) Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 82:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dibbens LM et al (2009) SCARB2 mutations in progressive myoclonus epilepsy (PME) without renal failure. Ann Neurol 66:532–536

    Article  CAS  PubMed  Google Scholar 

  79. Corbett MA et al (2011) A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet 88:657–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lomax LB et al (2013) ‘North Sea’ progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain 136:1146–1154

    Article  Google Scholar 

  81. Muona M et al (2015) A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 47:39–46

    Article  CAS  PubMed  Google Scholar 

  82. Smith KR et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hardies K et al (2015) Recessive loss-of-function mutations in AP4S1 cause mild fever-sensitive seizures, developmental delay and spastic paraplegia through loss of AP-4 complex assembly. Hum Mol Genet 24:2218–2227

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Marsh M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Helbig, I., von Deimling, M., Marsh, E.D. (2017). Epileptic Encephalopathies as Neurodegenerative Disorders. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_11

Download citation

Publish with us

Policies and ethics