Skip to main content

Alzheimer’s Disease: Insights from Genetic Mouse Models and Current Advances in Human IPSC-Derived Neurons

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

Alzheimer’s disease was first described in 1906 and since then tremendous efforts have been made to fully understand the disease pathology and to find a cure for this neurodegenerative disease. The diagnosis of Alzheimer’s is still difficult, especially in early stages of the disease. Current treatment of Alzheimer’s only ameliorates the symptoms but fails to provide a therapy. Over the last decades, animal models have been proven valuable in elucidating insights of the pathology. In vitro models using patient-derived cells are currently emerging and hold great promise in understanding the disease pathophysiology. Here, we introduce the neurobiology and genetic features of Alzheimer’s and describe what we have learned from studies employing mouse models and patient-derived induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

ABAD:

Aß-binding alcohol dehydrogenase

AD:

Alzheimer’s disease

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

ApoE:

Apolipoprotein E

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

Aβ:

Amyloid-β

BDNF:

Brain-derived neurotropic factor

BiP:

Binding immunoglobulin protein

cAMP:

Cyclic adenosine monophosphate

cdk5:

Cyclin-dependent kinase

CHOP:

CCAAT-enhancer-binding protein homologous protein

CRISPR:

Clustered regularly interspaced palindromic repeats

CSF:

Cerebrospinal fluid

CT:

Computed tomography

CTF83:

Carboxy-terminal fragment produced by the α-secretase

CTF99:

Carboxy-terminal fragment produced by the β-secretase

DS:

Down syndrome

FAD:

Familial AD

FTD:

Frontotemporal dementia

GSI:

β-Secretase inhibitor

GSK3β:

Glycogen synthase kinase 3β

GSM:

β-Secretase modulator

hiPSCs:

Human induced pluripotent stem cells

htau:

Human tau

IPSCs:

Induced pluripotent stem cells

MAPT:

Microtubule-associated protein tau

MB:

Methylene blue

miRNA:

Micro RNA

MRI:

Magnetic resonance imaging

mRNA:

Messenger RNA

NFTs:

Neurofibrillary tangles

NMDARs:

N-methyl-d-aspartate receptors

NO:

Nitric oxide

NR1:

NMDAR subunit 1

NR2A-NR2D:

NMDAR subunit 2A-D

NR3A-NR2B:

NMDAR subunit 3A-B

PDGF:

Platelet-derived growth factor

PET:

Positron emission tomography

PIB:

Pittsburgh Compound-B

PP2A:

Protein phosphatase 2A

PrPC:

Cellular prion protein

PSD95:

Postsynaptic density protein 95

PSEN:

Presenilin protein

RNA:

Ribonucleic acid

ROS:

Reactive oxidative species

SAD:

Sporadic AD

sAPPα/sAPPβ:

Soluble extracellular APP fragment after α- or β-secretase processing, respectively

shRNA:

Short hairpin RNA

SNP:

Single-nucleotide polymorphism

ZFNs:

Zinc-finger nucleases

References

  1. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8(6):429–431. PMID: 8713166

    Article  CAS  PubMed  Google Scholar 

  2. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. PMID: 6375662

    Article  CAS  PubMed  Google Scholar 

  3. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089. PMID: 3084478

    CAS  PubMed  Google Scholar 

  4. Nukina N, Ihara Y (1986) One of the antigenic determinants of paired helical filaments is related to tau protein. J Biochem 99(5):1541–1544. PMID: 2423512

    Article  CAS  PubMed  Google Scholar 

  5. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82(12):4245–4249. PMID: 3159021. PMCID: 397973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. PMID: 17245412

    Article  CAS  PubMed  Google Scholar 

  7. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870. PMID: 8705854

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C et al (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264(5163):1336–1340. PMID: 8191290

    Article  CAS  PubMed  Google Scholar 

  9. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688. PMID: 15748844

    Google Scholar 

  10. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357. PMID: 16541076

    Article  CAS  PubMed  Google Scholar 

  11. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46(6):860–866. PMID: 10589538

    Article  CAS  PubMed  Google Scholar 

  12. Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y et al (2015) Na, K-ATPase alpha3 is a death target of Alzheimer patient amyloid-beta assembly. Proc Natl Acad Sci U S A 112(32):E4465–E4474. PMID: 26224839. PMCID: PMC4538662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293. PMID: 24742457

    Article  CAS  PubMed  Google Scholar 

  14. Lai TW, Shyu WC, Wang YT (2011) Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med 17(5):266–275. PMID: 21310659

    Article  CAS  PubMed  Google Scholar 

  15. Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB (2000a) beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–5632. PMID: 10681545

    Article  CAS  PubMed  Google Scholar 

  16. Wang HY, Lee DH, Davis CB, Shank RP (2000b) Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75(3):1155–1161. PMID: 10936198

    Article  CAS  PubMed  Google Scholar 

  17. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132. PMID: 19242475. PMCID: PMC2748841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K et al (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-d-aspartate receptor. J Biol Chem 276(1):693–699. PMID: 11024032

    Article  CAS  PubMed  Google Scholar 

  19. Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A et al (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15(9):1227–1235. PMID: 22820466. PMCID: PMC3431439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298(5594):846–850. PMID: 12399596

    Article  CAS  PubMed  Google Scholar 

  21. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 88(14):6368–6371. PMID: 1648740. PMCID: PMC52084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875. PMID: 17360908

    Article  CAS  PubMed  Google Scholar 

  23. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31(43):10626–10633. PMID: 1420178

    Article  CAS  PubMed  Google Scholar 

  24. Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85(2):148–175. PMID: 18448228

    Article  CAS  PubMed  Google Scholar 

  25. Seiberlich V, Bauer NG, Schwarz L, Ffrench-Constant C, Goldbaum O, Richter-Landsberg C (2015) Downregulation of the microtubule associated protein Tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. Glia 63(9):1621–1635. PMID: 25847153

    Article  PubMed  Google Scholar 

  26. Brandt R, Leschik J (2004) Functional interactions of tau and their relevance for Alzheimer’s disease. Curr Alzheimer Res 1(4):255–269. PMID: 15975055

    Article  CAS  PubMed  Google Scholar 

  27. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397. PMID: 20655099

    Article  CAS  PubMed  Google Scholar 

  28. Ittner LM, Gotz J (2011) Amyloid-beta and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72. PMID: 21193853

    Article  CAS  PubMed  Google Scholar 

  29. Sontag JM, Sontag E (2014) Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci 7:16. PMID: 24653673. PMCID: PMC3949405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081. PMID: 21172610. PMCID: PMC3026458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DuBoff B, Feany M, Gotz J (2013) Why size matters – balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335. PMID: 23582339

    Article  CAS  PubMed  Google Scholar 

  32. Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM (2006) Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J Biol Chem 281(51):39413–39423. PMID: 17056594

    Google Scholar 

  33. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481. PMID: 16020737. PMCID: PMC1574647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cruts M, Van Broeckhoven C (2008) Loss of progranulin function in frontotemporal lobar degeneration. Trends Genet 24(4):186–194. PMID: 18328591

    Article  CAS  PubMed  Google Scholar 

  35. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L et al (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43(6):815–825. PMID: 9629852

    Article  CAS  PubMed  Google Scholar 

  36. Dosunmu R, Wu J, Basha MR, Zawia NH (2007) Environmental and dietary risk factors in Alzheimer’s disease. Expert Rev Neurother 7(7):887–900. PMID: 17610395

    Article  CAS  PubMed  Google Scholar 

  37. Holscher C (2011) Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans 39(4):891–897. PMID: 21787319

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62. PMID: 21598254. PMCID: PMC4484598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778. PMID: 18802446

    Article  CAS  PubMed  Google Scholar 

  40. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90(5):1977–1981. PMID: 8446617. PMCID: PMC46003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923. PMID: 8346443

    Article  CAS  PubMed  Google Scholar 

  42. Christensen DZ, Schneider-Axmann T, Lucassen PJ, Bayer TA, Wirths O (2010) Accumulation of intraneuronal Abeta correlates with ApoE4 genotype. Acta Neuropathol 119(5):555–566. PMID: 20217101. PMCID: PMC2849938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO et al (2012) Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid beta peptide. J Neurosci 32(43):15181–15192. PMID: 23100439. PMCID: PMC3493562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koffie RM, Hashimoto T, Tai HC, Kay KR, Serrano-Pozo A, Joyner D et al (2012) Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-beta. Brain 135(Pt 7):2155–2168. PMID: 22637583. PMCID: PMC3381721

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544. PMID: 18568014

    Article  PubMed  CAS  Google Scholar 

  46. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373(6514):523–527. PMID: 7845465

    Article  CAS  PubMed  Google Scholar 

  47. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ et al (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408(6815):975–979. PMID: 11140684

    Article  CAS  PubMed  Google Scholar 

  48. Hsiao WL, Wolff GL, North BM, Ollmann MM, Barsh GS, Fan H (1996) Differential spontaneous transformation in vitro of newly established mouse fibroblast lines carrying or lacking the viable yellow mutation (Avy) of the mouse agouti locus. Mol Carcinog 15(1):70–80. PMID: 8561869

    Article  CAS  PubMed  Google Scholar 

  49. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058. PMID: 10818140

    CAS  PubMed  Google Scholar 

  50. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94(24):13287–13292. PMID: 9371838. PMCID: PMC24301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4(1):97–100. PMID: 9427614

    Article  CAS  PubMed  Google Scholar 

  52. Schmitz C, Rutten BP, Pielen A, Schafer S, Wirths O, Tremp G et al (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164(4):1495–1502. PMID: 15039236. PMCID: PMC1615337

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25(4):402–405. PMID: 10932182

    Google Scholar 

  54. Gotz J, Chen F, Barmettler R, Nitsch RM (2001) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276(1):529–534. PMID: 11013246

    Google Scholar 

  55. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491. PMID: 11520987

    Article  CAS  PubMed  Google Scholar 

  56. Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M et al (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP x Tau transgenic mice. Am J Pathol 171(6):2012–2020. PMID: 18055549. PMCID: PMC2111123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293(5534):1491–1495. PMID: 11520988

    Article  CAS  PubMed  Google Scholar 

  58. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313(5794):1781–1784. PMID: 16990547

    Article  CAS  PubMed  Google Scholar 

  59. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741. PMID: 10531052

    Article  CAS  PubMed  Google Scholar 

  60. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–278. discussion 8–84. PMID: 7566337

    Article  CAS  PubMed  Google Scholar 

  61. Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948. PMID: 23773063

    Article  PubMed  Google Scholar 

  62. Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48(3):356–366. PMID: 22668776

    Article  CAS  PubMed  Google Scholar 

  63. Karch CM, Jeng AT, Goate AM (2012) Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 287(51):42751–42762. PMID: 23105105. PMCID: PMC3522274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211(3):387–393. PMID: 24534188. PMCID: PMC3949564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. PMID: 19503072

    Google Scholar 

  66. Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H et al (2014) A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol 127(5):667–683. PMID: 24531916

    Google Scholar 

  67. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754. PMID: 17478722

    Article  CAS  PubMed  Google Scholar 

  68. Chin J, Palop JJ, Yu GQ, Kojima N, Masliah E, Mucke L (2004) Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice. J Neurosci 24(19):4692–4697. PMID: 15140940

    Google Scholar 

  69. Haass C, Mandelkow E (2010) Fyn-tau-amyloid: a toxic triad. Cell 142(3):356–358. PMID: 20691893

    Article  CAS  PubMed  Google Scholar 

  70. Grueninger F, Bohrmann B, Czech C, Ballard TM, Frey JR, Weidensteiner C et al (2010) Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice. Neurobiol Dis 37(2):294–306. PMID: 19781645

    Article  CAS  PubMed  Google Scholar 

  71. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation. Neuron 78(1):94–108. PMID: 23583109. PMCID: PMC3784324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070. PMID: 14643377

    Google Scholar 

  73. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421. PMID: 12895417

    Article  CAS  PubMed  Google Scholar 

  74. Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A et al (2007) Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev 31(1):125–147. PMID: 17055579

    Article  CAS  PubMed  Google Scholar 

  75. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062. PMID: 19897719. PMCID: PMC2774257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Platt B, Drever B, Koss D, Stoppelkamp S, Jyoti A, Plano A et al (2011) Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One 6(11):e27068. PMID: 22096518. PMCID: PMC3214038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo Q, Li H, Cole AL, Hur JY, Li Y, Zheng H (2013) Modeling Alzheimer’s disease in mouse without mutant protein overexpression: cooperative and independent effects of Abeta and tau. PLoS One 8(11):e80706. PMID: 24278307. PMCID: PMC3835479

    Article  PubMed  PubMed Central  Google Scholar 

  78. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S et al (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17(5):661–663. PMID: 24728269

    Article  CAS  PubMed  Google Scholar 

  79. Mitani Y, Yarimizu J, Saita K, Uchino H, Akashiba H, Shitaka Y et al (2012) Differential effects between gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-transgenic and nontransgenic mice. J Neurosci 32(6):2037–2050. PMID: 22323718

    Article  CAS  PubMed  Google Scholar 

  80. Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N et al (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282(33):23818–23828. PMID: 17548355

    Article  CAS  PubMed  Google Scholar 

  81. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303. PMID: 19679070. PMCID: PMC3044446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17(3):263–264. PMID: 9354781

    Article  CAS  PubMed  Google Scholar 

  83. Dodart JC, Marr RA, Koistinaho M, Gregersen BM, Malkani S, Verma IM et al (2005) Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102(4):1211–1216. PMID: 15657137. PMCID: PMC544620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM (2002) Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol Dis 9(3):305–318. PMID: 11950276

    Article  CAS  PubMed  Google Scholar 

  85. Chan ES, Chen C, Cole GM, Wong BS (2015) Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice. Sci Rep 5:13842. PMID: 26346625

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chang S, ran Ma T, Miranda RD, Balestra ME, Mahley RW, Huang Y (2005) Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A 102(51):18694–18699. PMID: 16344479. PMCID: PMC1311737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. James R, Searcy JL, Le Bihan T, Martin SF, Gliddon CM, Povey J et al (2012) Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge. J Cereb Blood Flow Metab 32(1):164–176. PMID: 21878944. PMCID: PMC3323298

    Article  CAS  PubMed  Google Scholar 

  88. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231. PMID: 24071439. PMCID: PMC3962811

    Article  CAS  PubMed  Google Scholar 

  89. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1240–1247. PMID: 24189435. PMCID: PMC4007397

    Article  CAS  PubMed  Google Scholar 

  90. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20(23):4515–4529. PMID: 21873260. PMCID: PMC3209824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA et al (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103. PMID: 19605646. PMCID: PMC2735241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M et al (2009) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30(10):1574–1586. PMID: 18295378

    Article  CAS  PubMed  Google Scholar 

  93. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB et al (2004) Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 279(48):50310–50320. PMID: 15371443

    Article  CAS  PubMed  Google Scholar 

  94. Eckert A, Hauptmann S, Scherping I, Rhein V, Muller-Spahn F, Gotz J et al (2008) Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5(3–4):157–159. PMID: 18322377

    Article  CAS  PubMed  Google Scholar 

  95. Trushina E, Nemutlu E, Zhang S, Christensen T, Camp J, Mesa J et al (2012) Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One 7(2):e32737. PMID: 22393443. PMCID: PMC3290628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304(5669):448–452. PMID: 15087549

    Article  CAS  PubMed  Google Scholar 

  97. Lasagna-Reeves CA, Kayed R (2011) Astrocytes contain amyloid-beta annular protofibrils in Alzheimer’s disease brains. FEBS Lett 585(19):3052–3057. PMID: 21872592

    Article  CAS  PubMed  Google Scholar 

  98. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P et al (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280(25):23802–23814. PMID: 15831501

    Article  CAS  PubMed  Google Scholar 

  99. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 106(34):14670–14675. PMID: 19667196. PMCID: PMC2732886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sheehan JP, Swerdlow RH, Miller SW, Davis RE, Parks JK, Parker WD et al (1997) Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J Neurosci 17(12):4612–4622. PMID: 9169522

    CAS  PubMed  Google Scholar 

  101. Overk CR, Rockenstein E, Florio J, Cheng Q, Masliah E (2015) Differential calcium alterations in animal models of neurodegenerative disease: Reversal by FK506. Neuroscience 2. PMID: 26341908

    Google Scholar 

  102. Herman MI, Chyka PA, Butler AY, Rieger SE (1999) Methylene blue by intraosseous infusion for methemoglobinemia. Ann Emerg Med 33(1):111–113. PMID: 9867898

    Article  CAS  PubMed  Google Scholar 

  103. Jinwal UK, Groshev A, Zhang J, Grover A, Sutariya VB (2014) Preparation and characterization of methylene blue nanoparticles for Alzheimer’s disease and other tauopathies. Curr Drug Deliv 11(4):541–550. PMID: 24237400

    Article  CAS  PubMed  Google Scholar 

  104. O’Leary JC 3rd, Li Q, Marinec P, Blair LJ, Congdon EE, Johnson AG et al (2010) Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 5:45. PMID: 21040568. PMCID: PMC2989315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ladiwala AR, Dordick JS, Tessier PM (2011) Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways. J Biol Chem 286(5):3209–3218. PMID: 21098486. PMCID: PMC3030325

    Article  CAS  PubMed  Google Scholar 

  106. Zakaria A, Hamdi N, Abdel-Kader RM (2015) Methylene blue improves brain mitochondrial ABAD functions and decreases Abeta in a neuroinflammatory Alzheimer’s disease mouse model. Mol Neurobiol. PMID: 25601181

    Google Scholar 

  107. Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38):8807–8814. PMID: 16177050

    Article  CAS  PubMed  Google Scholar 

  108. Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J et al (2005) Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 26(7):995–1000. PMID: 15748777

    Article  CAS  PubMed  Google Scholar 

  109. Halagappa VK, Guo Z, Pearson M, Matsuoka Y, Cutler RG, Laferla FM et al (2007) Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 26(1):212–220. PMID: 17306982

    Article  CAS  PubMed  Google Scholar 

  110. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319. PMID: 14991808

    Article  CAS  PubMed  Google Scholar 

  111. Maeda J, Ji B, Irie T, Tomiyama T, Maruyama M, Okauchi T et al (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27(41):10957–10968. PMID: 17928437

    Article  CAS  PubMed  Google Scholar 

  112. Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF et al (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102(33):11906–11910. PMID: 16091461. PMCID: PMC1188012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Viola KL, Sbarboro J, Sureka R, De M, Bicca MA, Wang J et al (2015) Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat Nanotechnol 10(1):91–98. PMID: 25531084. PMCID: PMC4300856

    Article  CAS  PubMed  Google Scholar 

  114. Shughrue PJ, Acton PJ, Breese RS, Zhao WQ, Chen-Dodson E, Hepler RW et al (2010) Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol Aging 31(2):189–202. PMID: 18486276

    Article  CAS  PubMed  Google Scholar 

  115. Hoerndli F, David DC, Gotz J (2005) Functional Genomics meets neurodegenerative disorders. Part II: application and data integration. Prog Neurobiol 76(3):169–188. PMID: 16169146

    Article  CAS  PubMed  Google Scholar 

  116. Gotz J, Matamales M, Gotz NN, Ittner LM, Eckert A (2012) Alzheimer’s disease models and functional genomics-How many needles are there in the haystack? Front Physiol 3:320. PMID: 22934069. PMCID: PMC3429089

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gotz J, Gotz NN (2009) Animal models for Alzheimer’s disease and frontotemporal dementia: a perspective. ASN Neuro 1(4.) PMID: 19839939. PMCID: PMC2785514

    Google Scholar 

  118. Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C et al (2000) The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J Neurosci 20(19):7345–7352. PMID: 11007892

    CAS  PubMed  Google Scholar 

  119. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30(20):4299–4308. PMID: 21946562. PMCID: PMC3199394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. PMID: 20533884

    Article  CAS  PubMed  Google Scholar 

  121. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332. PMID: 20471939

    Article  CAS  PubMed  Google Scholar 

  122. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420. PMID: 18434550. PMCID: PMC2359789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A et al (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33(3):422–428. PMID: 19110058

    Article  CAS  PubMed  Google Scholar 

  124. Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y et al (2011) miR-29c regulates BACE1 protein expression. Brain Res 1395:108–115. PMID: 21565331

    Article  CAS  PubMed  Google Scholar 

  125. Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M 2015 World Alzheimer’s Report 2015. Alzheimer’s Disease International, October 2015. Report No.

    Google Scholar 

  126. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. PMID: 18035408

    Article  CAS  PubMed  Google Scholar 

  127. Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R et al (2012) Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488(7413):652–655. PMID: 22902501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu DX, Marchetto MC, Gage FH (2013) Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 12(6):678–688. PMID: 23746977

    Article  CAS  PubMed  Google Scholar 

  129. Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA (2014) Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener 9:3. PMID: 24401693. PMCID: PMC3896712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160. PMID: 8577732. PMCID: PMC40048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Porteus M (2010) Testing a three-finger zinc finger nuclease using a GFP reporter system. Cold Spring Harb Protoc 12:pdb prot5531. PMID: 21123418

    Google Scholar 

  132. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. PMID: 22745249

    Article  CAS  PubMed  Google Scholar 

  133. Mungenast AE, Siegert S, Tsai LH (2015) Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 4. PMID: 26657644

    Google Scholar 

  134. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331. PMID: 21757228. PMCID: PMC3155290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M et al (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A 110(50):20284–20289. PMID: 24277810. PMCID: PMC3864329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. PMID: 23995685.PMCID: PMC3817409

    Article  CAS  PubMed  Google Scholar 

  137. Zhang D, Pekkanen-Mattila M, Shahsavani M, Falk A, Teixeira AI, Herland A (2014) A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35(5):1420–1428. PMID: 24290439

    Article  CAS  PubMed  Google Scholar 

  138. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274. PMID: 25732245. PMCID: PMC4462124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T et al (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23):4530–4539. PMID: 21900357

    Article  CAS  PubMed  Google Scholar 

  140. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220. PMID: 22278060. PMCID: PMC3338985

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Medina M, Avila J (2014) New insights into the role of glycogen synthase kinase-3 in Alzheimer’s disease. Expert Opin Ther Targets 18(1):69–77. PMID: 24099155

    Article  CAS  PubMed  Google Scholar 

  142. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in down syndrome. Sci Transl Med 4(124):124ra29. PMID: 22344463. PMCID: PMC4129935

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chang CY, Chen SM, Lu HE, Lai SM, Lai PS, Shen PW et al (2015) N-butylidenephthalide attenuates Alzheimer’s disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons. Sci Rep 5:8744. PMID: 25735452. PMCID: PMC4348654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J et al (2013) The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5(4):974–985. PMID: 24239350. PMCID: PMC3867011

    Article  CAS  PubMed  Google Scholar 

  145. Liu Q, Waltz S, Woodruff G, Ouyang J, Israel MA, Herrera C et al (2014) Effect of potent gamma-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol 71(12):1481–1489. PMID: 25285942. PMCID: PMC4374637

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12(4):487–496. PMID: 23434393

    Article  CAS  PubMed  Google Scholar 

  147. Murrell JR, Hake AM, Quaid KA, Farlow MR, Ghetti B (2000) Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch Neurol 57(6):885–887. PMID: 10867787

    Article  CAS  PubMed  Google Scholar 

  148. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LN et al (2014) The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 23(13):3523–3536. PMID: 24524897. PMCID: PMC4049307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515(7526):274–278. PMID: 25307057. PMCID: PMC4366007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Moore S, Evans LD, Andersson T, Portelius E, Smith J, Dias TB et al (2015) APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep 11(5):689–696. PMID: 25921538. PMCID: PMC4431668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390. PMID: 9450754

    Article  PubMed  CAS  Google Scholar 

  152. Nieweg K, Andreyeva A, van Stegen B, Tanriover G, Gottmann K (2015) Alzheimer’s disease-related amyloid-beta induces synaptotoxicity in human iPS cell-derived neurons. Cell Death Dis 6:e1709. PMID: 25837485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W et al (2015) Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 16:84. PMID: 25765079. PMCID: PMC4344782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F, Revilla AC et al (2015) Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16(4):373–385. PMID: 25772071. PMCID: PMC4388804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102(38):13461–13466. PMID: 16174740. PMCID: PMC1224625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177. PMID: 17220890. PMCID: PMC2657343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ et al (2004) Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 61(8):1200–1205. PMID: 15313836

    Article  PubMed  Google Scholar 

  158. Grear KE, Ling IF, Simpson JF, Furman JL, Simmons CR, Peterson SL et al (2009) Expression of SORL1 and a novel SORL1 splice variant in normal and Alzheimers disease brain. Mol Neurodegener 4:46. PMID: 19889229. PMCID: PMC2776013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. McCarthy JJ, Saith S, Linnertz C, Burke JR, Hulette CM, Welsh-Bohmer KA et al (2012) The Alzheimer’s associated 5′ region of the SORL1 gene cis regulates SORL1 transcripts expression. Neurobiol Aging 33(7):1485 e1–1485 e8. PMID: 21185108. PMCID: PMC3117021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by funding from the National Health & Medical Research Council (#1081916, #1037746, #1003083) and the Australian Research Council (#DP130102027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne E. Harasta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Harasta, A.E., Ittner, L.M. (2017). Alzheimer’s Disease: Insights from Genetic Mouse Models and Current Advances in Human IPSC-Derived Neurons. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_1

Download citation

Publish with us

Policies and ethics