Skip to main content

Kinetochore Malfunction in Human Pathologies

  • Chapter
  • First Online:
Cell Division Machinery and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1002))

Abstract

The cell cycle culminates in mitosis with the purpose of dividing the cell’s DNA content equally over two daughter cells. Error-free segregation relies on correct connections between chromosomes and spindle microtubules. Kinetochores are complex multi-protein assemblies that mediate these connections and are the platforms for attachment-error-correction and spindle assembly checkpoint signaling. Proper kinetochore function is therefore key in preventing aneuploidization. Mutations in genes encoding kinetochore proteins are associated with several severe developmental disorders associated with microcephaly, and kinetochore defects contribute to chromosomal instability in certain cancers. This chapter gives an overview of the processes necessary for faithful chromosome segregation and how kinetochore malfunction causes various human pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel JJ, Amon A (2012) New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 28:189–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ricke RM, van Deursen JM (2013) Aneuploidy in health, disease, and aging. J Cell Biol 201(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheeseman IM (2014) The kinetochore. Cold Spring Harb Perspect Biol 6(7):a015826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wendell KL, Wilson L, Jordan MA (1993) Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. J Cell Sci 104(2):261–274

    CAS  PubMed  Google Scholar 

  5. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13(12):789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Primorac I, Musacchio A (2013) Panta rhei: the APC/C at steady state. J Cell Biol 201(2):177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sacristan C, Kops GJPL (2015) Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 25(1):21–28

    Article  CAS  PubMed  Google Scholar 

  8. London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15(11):736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17(1):16–29

    Article  CAS  PubMed  Google Scholar 

  10. Varma D, Salmon ED (2012) The KMN protein network–chief conductors of the kinetochore orchestra. J Cell Sci 125(Pt 24):5927–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caldas GV, DeLuca JG (2014) KNL1: bringing order to the kinetochore. Chromosoma 123(3):169–181

    Article  CAS  PubMed  Google Scholar 

  12. Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A, Kuijt T, Ubbink M, von Castelmur E, Perrakis A, Kops GJPL (2015) CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348(6240):1264–1267

    Article  CAS  PubMed  Google Scholar 

  13. Ji Z, Gao H, Yu H, Cayirlioglu P, Kadow IG, Vosshall LB, Stornetta RL, West GH, Guyenet PG, Isacson O, Nishiyama A, Mulkey DK, Koschnitzky JE (2015) CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348(6240):1260–1264

    Article  CAS  PubMed  Google Scholar 

  14. Vleugel M, Hoek T, Tromer E, Sliedrecht T, Groenewold V, Omerzu M, Kops GJPL (2015) Dissecting the roles of human BUB1 in the spindle assembly checkpoint. J Cell Sci 128:2975–2982

    Article  CAS  PubMed  Google Scholar 

  15. Zhang G, Lischetti T, Hayward DG, Nilsson J (2015) Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nat Commun 6:7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson VL, Scott MIF, Holt SV, Hussein D, Taylor SS (2004) Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117(Pt 8):1577–1589

    Article  CAS  PubMed  Google Scholar 

  17. Holt SV, Vergnolle MA, Hussein D, Wozniak MJ, Allan VJ, Taylor SS (2005) Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J Cell Sci 118(Pt 20):4889–4900

    Article  CAS  PubMed  Google Scholar 

  18. Suijkerbuijk SJE, Vleugel M, Teixeira A, Kops GJPL (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23(4):745–755

    Article  CAS  PubMed  Google Scholar 

  19. Akera T, Goto Y, Sato M, Yamamoto M, Watanabe Y (2015) Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore. Nat Cell Biol 17(9):1124–1133

    Article  CAS  PubMed  Google Scholar 

  20. Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327(5962):172–177

    Article  CAS  PubMed  Google Scholar 

  21. Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330(6001):239–243

    Article  CAS  PubMed  Google Scholar 

  22. Kops GJPL, Shah JV (2012) Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint. Chromosoma 121(5):509–525

    Article  PubMed  Google Scholar 

  23. Funabiki H, Wynne DJ (2013) Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 122(3):135–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14(1):25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Etemad B, Kops GJPL (2016) Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr Opin Cell Biol 39:101–108

    Article  CAS  PubMed  Google Scholar 

  26. Kops GJPL, Saurin AT, Meraldi P (2010) Finding the middle ground: how kinetochores power chromosome congression. Cell Mol Life Sci 67(13):2145–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2:484–491

    Article  CAS  PubMed  Google Scholar 

  28. Bader JR, Vaughan KT (2010) Dynein at the kinetochore: timing, interactions and functions. Semin Cell Dev Biol 21(3):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20(6):R285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al Alwan I, Khadora M, Amir I, Nasrat G, Omair A, Brown L, Al Dubayee M, Badri M (2014) Turner syndrome genotype and phenotype and their effect on presenting features and timing of diagnosis. Int J Health Sci (Qassim) 8(2):195–202

    Google Scholar 

  31. Knoch J, Kamenisch Y, Kubisch C, Berneburg M (2012) Rare hereditary diseases with defects in DNA-repair. Eur J Dermatol 22(4):443–455

    CAS  PubMed  Google Scholar 

  32. Cucco F, Musio A (2016) Genome stability: what we have learned from cohesinopathies. Am J Med Genet C Semin Med Genet 172:171

    Article  PubMed  Google Scholar 

  33. Zakari M, Yuen K, Gerton JL (2015) Etiology and pathogenesis of the cohesinopathies. Wiley Interdiscip Rev Dev Biol 4:489

    Article  CAS  PubMed  Google Scholar 

  34. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188(3):369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Janssen A, van der Burg M, Szuhai K, Kops GJPL, Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333(6051):1895–1898

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, Han S, van Deursen JM, Zhang P (2010) The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci U S A 107(32):14188–14193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z (2012) Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol 8:608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Upender MB, Habermann JK, McShane LM, Korn EL, Barrett JC, Difilippantonio MJ, Ried T (2004) Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Res 64(19):6941–6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dürrbaum M, Storchová Z (2015) Effects of aneuploidy on gene expression: implications for cancer. FEBS J 283:791–802

    Article  PubMed  CAS  Google Scholar 

  40. Dürrbaum M, Kuznetsova AY, Passerini V, Stingele S, Stoehr G, Storchová Z (2014) Unique features of the transcriptional response to model aneuploidy in human cells. BMC Genomics 15(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  41. Santaguida S, Amon A (2015) Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16(8):473–485

    Article  CAS  PubMed  Google Scholar 

  42. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Storchová Z, Kloosterman WP (2016) The genomic characteristics and cellular origin of chromothripsis. Curr Opin Cell Biol 40:106–113

    Article  PubMed  CAS  Google Scholar 

  44. Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, Meyerson M, Pellman D (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Pagter MS, Van Roosmalen MJ, Baas AF, Renkens I, Duran KJ, Van Binsbergen E, Tavakoli-Yaraki M, Hochstenbach R, Van Der Veken LT, Cuppen E, Kloosterman WP (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96(4):651–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SCM, Letteboer T, van Nesselrooij B, Hochstenbach R, Poot M, Cuppen E (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924

    Article  CAS  PubMed  Google Scholar 

  47. Knouse KA, Wu J, Whittaker CA, Amon A (2014) Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 111(37):13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McConnell MJ, Lindberg M, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken RS, Vermeesch JR, Hall IM, Gage FH (2013) Mosaic copy number variation in human neurons. Science 342:632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pfau SJ, Silberman RE, Knouse KA, Amon A (2016) Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo. Genes Dev 30:1395–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15(7):731–740

    Article  CAS  PubMed  Google Scholar 

  51. Woods CG, Basto R (2014) Microcephaly. Curr Biol 24(23):R1109–R1111

    Article  CAS  PubMed  Google Scholar 

  52. Gogendeau D, Siudeja K, Gambarotto D, Pennetier C, Bardin AJ, Basto R (2015) Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat Commun 6:8894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chetaille P, Preuss C, Burkhard S, Côté J-M, Houde C, Castilloux J, Piché J, Gosset N, Leclerc S, Wünnemann F, Thibeault M, Gagnon C, Galli A, Tuck E, Hickson GR, El Amine N, Boufaied I, Lemyre E, de Santa Barbara P, Faure S, Jonzon A, Cameron M, Dietz HC, Gallo-McFarlane E, Benson DW, Moreau C, Labuda D, Zhan SH, Shen Y, Jomphe M, Jones SJM, Bakkers J, Andelfinger G (2014) Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet 46(11):1245–1249

    Article  CAS  PubMed  Google Scholar 

  54. Silió V, McAinsh AD, Millar JB (2015) KNL1-Bubs and RZZ provide two separable pathways for checkpoint activation at human kinetochores. Dev Cell 35(5):600–613

    Article  PubMed  CAS  Google Scholar 

  55. Kiyomitsu T, Obuse C, Yanagida M (2007) Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. Dev Cell 13(5):663–676

    Article  CAS  PubMed  Google Scholar 

  56. Vleugel M, Tromer E, Omerzu M, Groenewold V, Nijenhuis W, Snel B, Kops GJPL (2013) Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J Cell Biol 203(6):943–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Genin A, Desir J, Lambert N, Biervliet M, Van der Aa N, Pierquin G, Killian A, Tosi M, Urbina M, Lefort A, Libert F, Pirson I, Abramowicz M (2012) Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum Mol Genet 21(24):5306–5317

    Article  CAS  PubMed  Google Scholar 

  58. Szczepanski S, Hussain MS, Sur I, Altmüller J, Thiele H, Abdullah U, Waseem SS, Moawia A, Nürnberg G, Noegel AA, Baig SM, Nürnberg P (2016) A novel homozygous splicing mutation of CASC5 causes primary microcephaly in a large Pakistani family. Hum Genet 135(2):157–170

    Article  CAS  PubMed  Google Scholar 

  59. Saadi A, Verny F, Siquier-Pernet K, Bole-Feysot C, Nitschke P, Munnich A, Abada-Dendib M, Chaouch M, Abramowicz M, Colleaux L (2016) Refining the phenotype associated with CASC5 mutation. Neurogenetics 17(1):71–78

    Article  CAS  PubMed  Google Scholar 

  60. Mirzaa GM, Vitre B, Carpenter G, Abramowicz I, Gleeson JG, Paciorkowski AR, Cleveland DW, Dobyns WB, O’Driscoll M (2014) Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum Genet 133(8):1023–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF, Khodjakov A (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311(5759):388–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359:536–539

    Article  CAS  PubMed  Google Scholar 

  63. Powles-Glover N (2014) Cilia and ciliopathies: classic examples linking phenotype and genotype-an overview. Reprod Toxicol 48:98–105

    Article  CAS  PubMed  Google Scholar 

  64. Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, Chanudet E, Brooks A, Christou-Savina S, Osman G, Walsh P, Bacchelli C, Chapgier A, Vernay B, Bader DM, Deshpande C, Sullivan MO’, Ocaka L, Stanescu H, Stewart HS, Hildebrandt F, Otto E, Johnson CA, Szymanska K, Katsanis N, Davis E, Kleta R, Hubank M, Doxsey S, Jackson A, Stupka E, Winey M, Beales PL (2015) The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genet 52(3):147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Filges I, Bruder E, Brandal K, Meier S, Undlien DE, Waage TR, Hoesli I, Schubach M, de Beer T, Sheng Y, Hoeller S, Schulzke S, Røsby O, Miny P, Tercanli S, Oppedal T, Meyer P, Selmer KK, Strømme P (2016) Strømme syndrome is a ciliary disorder caused by mutations in CENPF. Hum Mutat 37(4):359–363

    Article  CAS  PubMed  Google Scholar 

  66. Kanfer G, Courthéoux T, Peterka M, Meier S, Soste M, Melnik A, Reis K, Aspenström P, Peter M, Picotti P, Kornmann B (2015) Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun 6:8015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Volkov VA, Grissom PM, Arzhanik VK, Zaytsev AV, Renganathan K, McClure-Begley T, Old WM, Ahn N, Richard McIntosh J (2015) Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules. J Cell Biol 209(6):813–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vergnolle MAS, Taylor SS (2007) Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 17(13):1173–1179

    Article  CAS  PubMed  Google Scholar 

  69. Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L (2011) Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 13(4):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, Yilmaz S, Caglayan O, Dincer A, Nicholas AK, Quarrell O, Springell K, Karbani G, Malik S, Gannon C, Sheridan E, Crosier M, Lisgo SN, Lindsay S, Bilguvar K, Gergely F, Gunel M, Woods CG (2011) The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 88(5):523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guven A, Gunduz A, Bozoglu TM, Yalcinkaya C, Tolun A (2012) Novel NDE1 homozygous mutation resulting in microhydranencephaly and not microlyssencephaly. Neurogenetics 13(3):189–194

    Article  CAS  PubMed  Google Scholar 

  72. Alkuraya FS, Cai X, Emery C, Mochida GH, Al-Dosari MS, Felie JM, Hill RS, Barry BJ, Partlow JN, Gascon GG, Kentab A, Jan M, Shaheen R, Feng Y, Walsh CA (2011) Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am J Hum Genet 88(5):536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dantas TJ, Carabalona A, Jun-Kit Hu D, Vallee RB (2016) Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Cytoskeleton 73:566–576

    Article  CAS  PubMed  Google Scholar 

  74. Isidor B, Küry S, Rosenfeld JA, Besnard T, Schmitt S, Joss S, Davies SJ, Roger Lebel R, Henderson A, Schaaf CP, Streff HE, Yang Y, Jain V, Chida N, Latypova X, Le Caignec C, Cogné B, Mercier S, Vincent M, Colin E, Bonneau D, Denommé AS, Parent P, Gilbert-Dussardier B, Odent S, Toutain A, Piton A, Dina C, Donnart A, Lindenbaum P, Charpentier E, Redon R, Iemura K, Ikeda M, Tanaka K, Bézieau S (2016) De novo truncating mutations in the kinetochore-microtubules attachment gene CHAMP1 cause syndromic intellectual disability. Hum Mutat 37(4):354–358

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka AJ, Cho MT, Retterer K, Jones JR, Nowak C, Douglas J, Jiang Y-H, McConkie-Rosell A, Schaefer GB, Kaylor J, Rahman OA, Telegrafi A, Friedman B, Douglas G, Monaghan KG, Chung WK (2016) De novo pathogenic variants in CHAMP1 are associated with global developmental delay, intellectual disability, and dysmorphic facial features. Mol Case Stud 2(1):a000661

    Article  Google Scholar 

  76. Hempel M, Cremer K, Ockeloen CW, Lichtenbelt KD, Herkert JC, Denecke J, Haack TB, Zink AM, Becker J, Wohlleber E, Johannsen J, Alhaddad B, Pfundt R, Fuchs S, Wieczorek D, Strom TM, Van Gassen KLI, Kleefstra T, Kubisch C, Engels H, Lessel D (2015) De Novo mutations in CHAMP1 cause intellectual disability with severe speech impairment. Am J Hum Genet 97(3):493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Itoh G, Kanno S, Uchida KSK, Chiba S, Sugino S, Watanabe K, Mizuno K, Yasui A, Hirota T, Tanaka K (2011) CAMP (C13orf8, ZNF828) is a novel regulator of kinetochore-microtubule attachment. EMBO J 30(1):130–144

    Article  CAS  PubMed  Google Scholar 

  78. Nozawa R-S, Nagao K, Masuda H-T, Iwasaki O, Hirota T, Nozaki N, Kimura H, Obuse C (2010) Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 12(7):719–727

    Article  CAS  PubMed  Google Scholar 

  79. Tanno Y, Susumu H, Kawamura M, Sugimura H, Honda T, Watanabe Y (2015) The inner centromere-shugoshin network prevents chromosomal instability. Science 349(6253):1237–1240

    Article  CAS  PubMed  Google Scholar 

  80. Ye Y, Cho MT, Retterer K, Alexander N, Ben-Omran T, Al-Mureikhi M, Cristian I, Wheeler PG, Crain C, Zand D, Weinstein V, Vernon HJ, McClellan R, Krishnamurthy V, Vitazka P, Millan F, Chung WK (2015) De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Mol Case Stud 1(1):a000455

    Article  Google Scholar 

  81. Jacquemont S, Bocéno M, Rival JM, Méchinaud F, David A (2002) High risk of malignancy in mosaic variegated aneuploidy syndrome. Am J Med Genet 109(1):17–21

    Article  PubMed  Google Scholar 

  82. García-Castillo H, Vásquez-Velásquez AI, Rivera H, Barros-Núñez P (2008) Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A 146A(13):1687–1695

    Article  PubMed  Google Scholar 

  83. Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Méhes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36(11):1159–1161

    Article  CAS  PubMed  Google Scholar 

  84. Snape K, Hanks S, Ruark E, Barros-Núñez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D, Clayton-Smith J, Fitzpatrick DR, Gisselsson D, Jacquemont S, Asakura-Hay K, Micale MA, Tolmie J, Turnpenny PD, Wright M, Douglas J, Rahman N (2011) Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43(6):527–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Miyamoto T, Porazinski S, Wang H, Borovina A, Ciruna B, Shimizu A, Kajii T, Kikuchi A, Furutani-Seiki M, Matsuura S (2011) Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum Mol Genet 20(10):2058–2070

    Article  CAS  PubMed  Google Scholar 

  86. Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36(7):744–749

    Article  CAS  PubMed  Google Scholar 

  87. Suijkerbuijk SJE, Vleugel M, Teixeira A, Kops GJPL (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23(4):745–755

    Article  CAS  PubMed  Google Scholar 

  88. Izumi H, Matsumoto Y, Ikeuchi T, Saya H, Kajii T, Matsuura S (2009) BubR1 localizes to centrosomes and suppresses centrosome amplification via regulating Plk1 activity in interphase cells. Oncogene 28(31):2806–2820

    Article  CAS  PubMed  Google Scholar 

  89. Suijkerbuijk SJE, van Osch MHJ, Bos FL, Hanks S, Rahman N, Kops GJPL (2010) Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res 70(12):4891–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bossard C, Laurell H, Van den Berghe L, Meunier S, Zanibellato C, Prats H (2003) Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 5:433–439

    Article  CAS  PubMed  Google Scholar 

  91. Momotani K, Khromov AS, Miyake T, Stukenberg PT, Somlyo AV (2008) Cep57, a multidomain protein with unique microtubule and centrosomal localization domains. Biochem J 412(2):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou H, Wang T, Zheng T, Teng J, Chen J (2016) Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1–Mad2. Nat Commun 7:10151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Snape K, Hanks S, Ruark E, Barros-Núñez P, Elliott A, Murray A, Lane AH, Shannon N, Callier P, Chitayat D, Clayton-Smith J, Fitzpatrick DR, Gisselsson D, Jacquemont S, Asakura-Hay K, Micale MA, Tolmie J, Turnpenny PD, Wright M, Douglas J, Rahman N (2011) Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43(6):527–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beroukhim R, Mermel C, Porter D (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mitelman F, Johansson B, Mertens F (2016) Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. [Online]. Available: http://cgap.nci.nih.gov/Chromosomes/Mitelman

  96. Duijf PHG, Benezra R (2013) The cancer biology of whole-chromosome instability. Oncogene 32(40):4727–4736

    Article  CAS  PubMed  Google Scholar 

  97. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller M-C, Shaikh N, Domingo E, Kanu N, Dewhurst SM, Gronroos E, Chew SK, Rowan AJ, Schenk A, Sheffer M, Howell M, Kschischo M, Behrens A, Helleday T, Bartek J, Tomlinson IP, Swanton C (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494(7438):492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fukasawa K (2005) Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230(1):6–19

    Article  CAS  PubMed  Google Scholar 

  99. Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11(1):27–35

    Article  CAS  PubMed  Google Scholar 

  100. Kops GJPL, Weaver BAA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785

    Article  CAS  PubMed  Google Scholar 

  101. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19(22):1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13(3):189–203

    CAS  PubMed  Google Scholar 

  103. Bastians H (2015) Causes of chromosomal instability. In: Ghadimi B, Ried T (eds) Chromosomal instability in cancer cells, vol 200. Springer, Cham, pp 95–113

    Google Scholar 

  104. Simon JE, Bakker B, Foijer F (2015) CINcere modelling: what have mouse models for chromosome instability taught us? In: Chromosomal instability in cancer cells. Springer, Cham, pp 39–60

    Google Scholar 

  105. Tighe A, Johnson VL, Albertella M, Taylor SS (2001) Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep 2(7):609–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim HS, Kyung HP, Kim SA, Wen J, Seung WP, Park B, Gham CW, Woo JH, Sung HN, Ho KK, Song SY (2005) Frequent mutations of human Mad2, but not Bub1, in gastric cancers cause defective mitotic spindle checkpoint. Mutat Res Fundam Mol Mech Mutagen 578(1–2):187–201

    Article  CAS  Google Scholar 

  107. Suijkerbuijk SJE, Kops GJPL (2008) Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta Rev Cancer 1786(1):24–31

    Article  CAS  Google Scholar 

  108. Thiru P, Kern DM, McKinley KL, Monda JK, Rago F, Su K-C, Tsinman T, Yarar D, Bell GW, Cheeseman IM (2014) Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program. Mol Biol Cell 25(13):1983–1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Trivedi P, Stukenberg PT (2016) A centromere-signaling network underlies the coordination among mitotic events. Trends Biochem Sci 41(2):160–174

    Article  CAS  PubMed  Google Scholar 

  110. Hill VK, Kim J-S, Waldman T (2016) Cohesin mutations in human cancer. Biochim Biophys Acta Rev Cancer 1866(1):1–11

    Article  CAS  Google Scholar 

  111. Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT, Toretsky JA, Rosenberg SA, Shukla N, Ladanyi M, Samuels Y, James CD, Yu H, Kim J-S, Waldman T (2011) Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333(6045):1039–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D (2014) The mitotic origin of chromosomal instability. Curr Biol 24(4):R148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kabeche L, Compton DA (2012) Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 22(7):638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4(8):e6564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ertych N, Stolz A, Stenzinger A, Weichert W, Kaulfuß S, Burfeind P, Aigner A, Wordeman L, Bastians H (2014) Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nat Cell Biol 16(8):779–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378(6559):789–792

    Article  CAS  PubMed  Google Scholar 

  119. T. Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. JNCI J Natl Cancer Inst 91(15):1310–1316

    Article  Google Scholar 

  120. Choi E, Park PG, Lee HO, Lee YK, Kang GH, Lee JW, Han W, Lee HC, Noh DY, Lekomtsev S, Lee H (2012) BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev Cell 22(2):295–308

    Article  PubMed  CAS  Google Scholar 

  121. Park I, Lee HO, Choi E, Lee YK, Kwon MS, Min J, Park PG, Lee S, Kong YY, Gong G, Lee H (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202(2):295–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hernando E, Nahlé Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430(7001):797–802

    Article  CAS  PubMed  Google Scholar 

  123. Sotillo R, Schvartzman J-M, Socci ND, Benezra R (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464(7287):436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schvartzman JM, Duijf PHG, Sotillo R, Coker C, Benezra R (2011) Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 19(6):701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M (2008) Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 452(7185):365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Caldwell CM, Kaplan KB (2009) The role of APC in mitosis and in chromosome instability. Adv Exp Med Biol 656:51–64

    Article  CAS  PubMed  Google Scholar 

  127. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus GJ, Begthel H, Korving J, van de Wetering M, Schwank G, Logtenberg M, Cuppen E, Snippert HJ, Medema JP, Kops GJPL, Clevers H (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521(7550):43–47

    Article  CAS  PubMed  Google Scholar 

  128. Morris-Rosendahl DJ, Kaindl AM (2015) What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes 29(5):271–281

    Article  CAS  PubMed  Google Scholar 

  129. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Foijer F, Draviam VM, Sorger PK (2008) Studying chromosome instability in the mouse. Biochim Biophys Acta Rev Cancer 1786(1):73–82

    Article  CAS  Google Scholar 

  131. Jamieson CR, Govaerts C, Abramowicz MJ (1999) Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet 65(5):1465–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stromme P, Dahl E, Flage T, Stene-Johansen H (1993) Apple peel intestinal atresia in siblings with ocular anomalies and microcephaly. Clin Genet 44(4):208–210

    Article  CAS  PubMed  Google Scholar 

  133. Kavaslar GN, Onengut S, Derman O, Kaya A, Tolun A (2000) The novel genetic disorder microhydranencephaly maps to chromosome 16p13.3-12.1. Am J Hum Genet 66(5):1705–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, Bartholdi D, Beygo J, Di Donato N, Dufke A, Cremer K, Hempel M, Horn D, Hoyer J, Joset P, Röpke A, Moog U, Riess A, Thiel CT, Tzschach A, Wiesener A, Wohlleber E, Zweier C, Ekici AB, Zink AM, Rump A, Meisinger C, Grallert H, Sticht H, Schenck A, Engels H, Rappold G, Schröck E, Wieacker P, Riess O, Meitinger T, Reis A, Strom TM (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682

    Article  CAS  PubMed  Google Scholar 

  135. Ochiai H, Miyamoto T, Kanai A, Hosoba K, Sakuma T, Kudo Y, Asami K, Ogawa A, Watanabe A, Kajii T, Yamamoto T, Matsuura S (2013) TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome. Proc Natl Acad Sci U S A 111:1461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Pinson L, Mannini L, Willems M, Cucco F, Sirvent N, Frebourg T, Quarantotti V, Collet C, Schneider A, Sarda P, Geneviève D, Puechberty J, Lefort G, Musio A (2014) CEP57 mutation in a girl with mosaic variegated aneuploidy syndrome. Am J Med Genet A 164(1):177–181

    Article  CAS  Google Scholar 

  137. Chan GKT, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143(1):49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert J. P. L. Kops .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Wolf, B., Kops, G.J.P.L. (2017). Kinetochore Malfunction in Human Pathologies. In: Gotta, M., Meraldi, P. (eds) Cell Division Machinery and Disease. Advances in Experimental Medicine and Biology, vol 1002. Springer, Cham. https://doi.org/10.1007/978-3-319-57127-0_4

Download citation

Publish with us

Policies and ethics