Skip to main content

Single-Molecule Boolean Logic Gates

  • Conference paper
  • First Online:
Molecular Architectonics

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

The architecture of single-molecule Boolean logic gates can be based on classical, semi-classical, or quantum design rules. The advantages and limitations of each architecture in terms of computing power, clock frequency, and interconnects are discussed together with a complete description of the quantum Hamiltonian computing approach to help for comparison. For all those approaches, the often-mentioned problem of “contact” between a single molecule and a metallic nano-electrode must be re-analyzed in terms of quantum measurements. The metallic nano-electrodes of a tunnel junction is a true measurement apparatus, and its functioning is described by a new transduction function to pass from the intrinsic time-dependent electron transfer to the tunneling current intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aviram, A., Ratner, M.: Chem. Phys. Lett. 29, 277 (1974)

    Article  CAS  Google Scholar 

  2. Joachim, C., Gimzewski, J.K., Aviram, A.: Nature 408, 541 (2000)

    Article  CAS  Google Scholar 

  3. Carter, F.L.: Phys. D 10, 175 (1984)

    Article  Google Scholar 

  4. Moore, G.E.: Electronics 38, 114 (1965)

    Google Scholar 

  5. Joachim, C.: Nanotechnology 13, R1 (2002)

    Article  CAS  Google Scholar 

  6. Chuang, I.L., Vandesypan, D., Zhou, X., Leugh, D.W., Lyod, S.: Nature 393, 142 (1998)

    Article  Google Scholar 

  7. Hliwa, M., Bonvoisin, J., Joachim, C.: Architecture & design of molecule logic gates and atom circuits. In: Springer Series: Advances in Atom and Single Molecule Machines, vol. II, p. 237 (2013)

    Google Scholar 

  8. Duchemin, I., Joachim, C.: Chem. Phys. Lett. 406, 167 (2005)

    Article  CAS  Google Scholar 

  9. Dridi, G., Julien, R., Hliwa, M., Joachim, C.: Nanotechnology 26, 344003 (2015)

    Article  CAS  Google Scholar 

  10. Joachim, C. Nanopackaging: from nanomaterials to the atomic scale. In: Springer Series: Advances in Atom and Single Molecule Machines, vol. VII, p. 59 (2015)

    Google Scholar 

  11. Waldrop, M.M.: Nature 530, 145 (2016)

    Article  Google Scholar 

  12. Westervelt, R.M.: Science 320, 324 (2008)

    Article  CAS  Google Scholar 

  13. Koch, M., Ample, F., Joachim, C., Grill, L.: Nat. Nano. 7, 713 (2012)

    Article  CAS  Google Scholar 

  14. Joachim, C., Ratner, M.A.: PNAS 102, 8801 (2005)

    Article  CAS  Google Scholar 

  15. Renaud, N., Ratner, M.A., Joachim, C.: J. Phys. Chem. B 115, 5582 (2011)

    Article  CAS  Google Scholar 

  16. Joachim, C., Gimzewski, J.K.: Chem. Phys. Lett. 265, 353 (1997)

    Article  CAS  Google Scholar 

  17. Joachim, C., Gimzewski, J.K., Tang, H.: Phys. Rev. B 58, 16407 (1998)

    Article  CAS  Google Scholar 

  18. Stadler, R., Ami, S., Forshow, M., Joachim, C.: Nanotechnology 12, 350 (2001)

    Article  CAS  Google Scholar 

  19. Ellenbogen, J.C., Love, J.C.: Proc. IEEE 88, 386 (2000)

    Article  CAS  Google Scholar 

  20. Magoga, M., Joachim, C.: Phys. Rev. B 59, 16011 (1999)

    Article  CAS  Google Scholar 

  21. Lafferentz, F., Ample, F., Yu, H., Hecht, S., Joachim, C., Grill, L.: Science 323, 1193 (2009)

    Article  CAS  Google Scholar 

  22. Nacci,C., Ample, F., Bleger, D., Hecht, S., Joachim, C., Grill, L.: Nature Comm. 6, 7397 (2015)

    Google Scholar 

  23. Joachim, C., Magoga, M.: Chem. Phys. 281, 347 (2002)

    Article  CAS  Google Scholar 

  24. Joachim, C., Renaud, N., Hliwa, M.: Adv. Mater. 24, 312 (2012)

    Article  CAS  Google Scholar 

  25. Lippmann, B.A., Schwinger, J.: Phys. Rev. 79, 469 (1950)

    Article  Google Scholar 

  26. Soe, W.H., Manzano, C., Renaud, N., de Mendoza, P., De Sarkar, A., Ample, F., Hliwa, M., Echavarren, A.M., Chandrasekhar, N., Joachim, C.: Phys. Rev. B 83, 155443 (2011)

    Article  Google Scholar 

  27. Soe, W.H., Manzano, C., Renaud, N., de Mendoza, P., De Sarkar, A., Ample, F., Hliwa, M., Echavarren, A.M., Chandrasekhar, N., Joachim, C.: ACS Nano 5, 1436 (2011)

    Article  CAS  Google Scholar 

  28. Ample, F., Joachim, C.: Surf. Sci. 600, 3243 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the AtMol and PAMS European integrated project and the MEXT Japanese government MANA-NIMS WPI program for financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Joachim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Joachim, C. (2017). Single-Molecule Boolean Logic Gates. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_1

Download citation

Publish with us

Policies and ethics