Skip to main content

Mathematical Models Can Predict the SpreadĀ of an Invasive Species

  • Reference work entry
  • First Online:
Handbook of the Mathematics of the Arts and Sciences

Abstract

Invasive species are nonindigenous plants and animals that have the potential to cause great harm to both the environment and native species. If an invasive species is able to survive and spread throughout the environment, there may be large financial losses to the public. Public policy makers and scientists are responsible for developing and funding programs to control and eradicate invasive species. These programs are founded on the science of invasion ecology and the biological characteristics of the invader. Conclusions drawn from mathematical modeling have contributed to this knowledge base. This chapter presents some of the fundamental mathematical models in population ecology that have been used to predict how an invasive species population can grow and disperse after its introduction. These predictions are shown to be consistent with experimental data. The chapter concludes with a brief discussion of how the basic modeling principles and results that are presented here have contributed to developing strategies for control and eradication efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson JL, Albergotti L, Proulx S, Peden C, Huey RB, Phillips PC (2007) Thermal preference of Caenorhabditis elegans: a null model and empirical tests. J Exp Biol 210:3107ā€“3116

    ArticleĀ  Google ScholarĀ 

  • Andow DA, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landsc Ecol 4:177ā€“188

    ArticleĀ  Google ScholarĀ 

  • BacaĆ«r N (2011) A short history of mathematical population dynamics. Springer, London

    BookĀ  MATHĀ  Google ScholarĀ 

  • Beck KG, Zimmerman K, Schardt JD, Stone J, Lukens RR, Reichard S, Randall J, Cangelosi AA, Cooper D, Thompson JP (2008) Invasive species defined in a policy context: recommendations from the federal invasive species advisory committee. Invasive Plant Sci Manage 1:414ā€“421

    ArticleĀ  Google ScholarĀ 

  • Becker K (1972) Muskrats in central Europe and their control. In: Proceedings of the 5th vertebrate pest conference. University of Nebraska, Lincoln

    Google ScholarĀ 

  • Bertignac M, Lehodey P, Hampton J (1998) A spatial population dynamics simulation model of tropical tunas using a habitat index based on environmental parameters. Fish Oceanogr 7:326ā€“334

    ArticleĀ  Google ScholarĀ 

  • Boyce WE, DiPrima RC (2012) Elementary differential equations and boundary value problems, 10th edn. Wiley, New York

    MATHĀ  Google ScholarĀ 

  • Brassil CE (2001) Mean time to extinction of a metapopulation with an Allee effect. Ecol Model 143:9ā€“16

    ArticleĀ  Google ScholarĀ 

  • Dennis B (2002) Allee effects in stochastic populations. Oikos 96:389ā€“401

    ArticleĀ  Google ScholarĀ 

  • Edelstein-Keshet L (2005) Mathematical models in biology. SIAM, New York

    BookĀ  MATHĀ  Google ScholarĀ 

  • Fujisaki I, Pearlstine EV, Mazzotti FJ (2010) The rapid spread of invasive Eurasian collared doves Streptopelia decaocto in the continental USA follows human-altered habitats. Ibis 152:622ā€“632

    ArticleĀ  Google ScholarĀ 

  • Hastings A (1996) Models of spatial spread: a synthesis. Biol Conserv 78:143ā€“148

    ArticleĀ  Google ScholarĀ 

  • Hengeveld R (1992) Potential and limitations of predicting invasion rates. Fla Entomol 75:60ā€“72

    ArticleĀ  Google ScholarĀ 

  • Karieva P (1983) Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57:322ā€“327

    ArticleĀ  Google ScholarĀ 

  • Keller RP, Lodge DM, Lewis MA, Shogren JF (2009) Bioeconomics of invasive species: integrating ecology, economics, policy and management. Oxford University Press, New York

    Google ScholarĀ 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge, UK

    BookĀ  MATHĀ  Google ScholarĀ 

  • Kramer AM, Dennis B, Liebhold AM, Drake JM (2009) The evidence for Allee effects. Popul Ecol 51:341ā€“354

    ArticleĀ  Google ScholarĀ 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall, London

    BookĀ  MATHĀ  Google ScholarĀ 

  • Lewis MA, Petrovskii SV, Potts JR (2016) The mathematics behind biological invasions, vol 44. Springer, Berlin

    MATHĀ  Google ScholarĀ 

  • Liebhold A, Bascompte J (2003) The Allee effect, stochastic dynamics and the eradication of alien species. Ecol Lett 6:133ā€“140

    ArticleĀ  Google ScholarĀ 

  • Liebhold AM, Tobin PC (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253ā€“262

    ArticleĀ  Google ScholarĀ 

  • Liebhold AM, Work TT, McCullough DG, Cavey JF (2006) Airline baggage as a pathway for alien insect species entering the United States. Am Entomol 52:48ā€“54

    ArticleĀ  Google ScholarĀ 

  • Liebhold AM et al (2016) Eradication of invading insect populations: from concepts to applications. Annu Rev Entomol 61:335ā€“352

    ArticleĀ  Google ScholarĀ 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Black-well, Malden

    Google ScholarĀ 

  • Logan JD (2004) Applied partial differential equations, 2nd edn. Springer, New York

    BookĀ  MATHĀ  Google ScholarĀ 

  • Lonsdale WM (1993) Rates of spread of an invading species Mimosa pigra in northern Australia. J Ecol 81:513ā€“521

    ArticleĀ  Google ScholarĀ 

  • Madsen JD, Owens CS (2000) Factors contributing to the spread of Hydrilla in lakes and reservoirs. Aquatic plant control technical notes collection (ERDC TN-APCRP-EA-01). US Army Engineer Research and Development Center, Vicksburg, pp 1ā€“11

    Google ScholarĀ 

  • McJunkin JW, Zelmer DA, Applegate RD (2005) Population dynamics of wild turkeys in Kansas (Meleagris gallopavo): theoretical considerations and implications of rural mail carrier survey (RMCS) data. Am Midl Nat 154:178ā€“187

    ArticleĀ  Google ScholarĀ 

  • Mills EL, Leach JH, Carlton JT, Secor CL (1994) Exotic species and the integrity of the Great Lakes. Bioscience 44:666ā€“676

    ArticleĀ  Google ScholarĀ 

  • Neubert MG, Parker IM (2004) Projecting rates of spread for invasive species. Risk Anal 24:817ā€“831

    ArticleĀ  Google ScholarĀ 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Springer, New York

    BookĀ  MATHĀ  Google ScholarĀ 

  • Petrovska BB (2012) Historical review of medicinal plants usage. Pharm Rev 6:1ā€“5

    Google ScholarĀ 

  • Picart D, Milner FA, Thiery D (2015) Optimal treatments schedule in insect pest control in viticulture. Math Popul Stud 22:172ā€“181

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273ā€“288

    ArticleĀ  Google ScholarĀ 

  • Ricklefs RE, Miller GL (1999) Ecology, 4th edn. W.H Freeman, New York

    Google ScholarĀ 

  • Rodriguez-Brenes IA, Komarova NL, Wodarz D (2013) Tumor growth dynamics: in-sights into somatic evolutionary processes. Trends Ecol Evol 28:597ā€“604

    ArticleĀ  Google ScholarĀ 

  • Santos VB, Yoshihara E, Freitas RTF, Reis Neto RV (2008) Exponential growth model of Nile tilapia (Oreochromis niloticus) strains considering heteroscedastic variance. Aquaculture 274:96ā€“100

    ArticleĀ  Google ScholarĀ 

  • Seidl I, Tisdell CA (1999) Carrying capacity reconsidered: from Malthusā€™ population theory to cultural carrying capacity. Ecol Econ 31(3):395ā€“408

    ArticleĀ  Google ScholarĀ 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google ScholarĀ 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38(1ā€“2):196ā€“218

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185ā€“190

    ArticleĀ  Google ScholarĀ 

  • Suckling DM, Tobin PC, McCullough DG, Herms DA (2012) Combining tactics to exploit Allee effects for eradication of alien insect populations. J Econ Entomol 105:1ā€“13

    ArticleĀ  Google ScholarĀ 

  • Taylor CM, Hastings A (2005) Allee effects in biological invasions. Ecol Lett 8:895ā€“908

    ArticleĀ  Google ScholarĀ 

  • Tobin PC, Liebhold AM, Roberts EA, Blackburn LM (2015) Estimating spread rates of non-native species: the gypsy moth as a case study. In: Venette RC (ed) Pest risk modelling and mapping for invasive alien species. CABI Press, Wallingford, pp 131ā€“144

    ChapterĀ  Google ScholarĀ 

  • Turchin P (2001) Does population ecology have general laws? Oikos 94:17ā€“26

    ArticleĀ  Google ScholarĀ 

  • Volpert V, Petrovskii S (2009) Reaction-diffusion waves in biology. Phys Life Rev 6:267ā€“310

    ArticleĀ  Google ScholarĀ 

  • Walker MS (2018) Spotted lanternfly: states urge citizens to report sightings of invasive insect hitchhiker. In: Entomology Today. Entomological Society of America. https://entomologytoday.org/2018/02/26/spotted-lanternfly-states-urge-citizens-report-sightings-invasive-insect-hitchhiker/. Accessed 9 March, 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Alford .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alford, J.G. (2021). Mathematical Models Can Predict the SpreadĀ of an Invasive Species. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-57072-3_52

Download citation

Publish with us

Policies and ethics