Skip to main content

Polymer-Inorganic Nanocomposites for Polymer Electrolyte Membrane Fuel Cells

  • Chapter
  • First Online:
Polymer-Engineered Nanostructures for Advanced Energy Applications

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Polymer/inorganic nanocomposites represent a unique class of amorphous, flexible, and isotropic materials for applications in high, intermediate, and low temperature polymer electrolyte membrane fuel cells (PEMFCs). Nanocomposite polymer electrolyte membranes in PEMFCs constitute of either a polymer matrix continuous phase with dispersed inorganic proton conducting particles or a proton conducting polymer matrix continuous phase with dispersed inorganic particles. Therefore, these nanocomposites are basically composites of polymer having nanoscale building blocks of inorganic particles. These remarkable hybrid materials possess combined advantages of both the inorganic and the polymer phases, often with synergistic outcomes. In essence, materials of hybrid nature possessing nanosized interfaces between the dispersed inorganic and the continuous polymer domains present remarkable opportunities to produce unique material properties. Accordingly, significant thermal and ionic conductivities, thermal stability, flexibility, corrosion resistance, mechanical strength, dielectricity, ductility, optical density, and processability are some important and attractive attributes of these nanocomposite materials. In addition, these properties can be controlled easily by varying the composition, synthetic procedure, bonding between the polymer and the inorganic particles, and the size of the nanophases. This chapter will deal with the use of polymer/inorganic nanocomposite materials in various categories of PEMFCs, namely hydrogen, direct methanol, and microbial fuel cells. The advantages obtained upon utilizing these hybrid nanocomposite materials over that of the state-of-the-art materials will be highlighted in details. In addition, possible future directions will be provided regarding possibilities of fabricating and utilizing new and prospective hybrid materials for these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kundu PP, Dutta K (2016) Hydrogen fuel cells for portable applications. In: Ball M, Basile A, Veziroglu TN (eds) Compendium of hydrogen energy, 4th edn. Woodhead Publishing, Elsevier, pp 111–131

    Google Scholar 

  2. Das S, Dutta K, Kundu PP (2015) Nickel nanocatalysts supported on sulfonated polyaniline: potential toward methanol oxidation and as anode materials for DMFCs. J Mater Chem A 3:11349–11357

    Article  Google Scholar 

  3. Das S, Dutta K, Kundu PP et al (2016) Ulfonated polypyrrole matrix induced enhanced efficiency of Ni nanocatalyst for application as an anode material for DMFCs. Mater Chem Phys 176:143–151

    Article  Google Scholar 

  4. Nandy A, Kumar V, Mondal S (2015) Performance evaluation of microbial fuel cells: effect of carrying electrode configuration and presence of a membrane electrode assembly. New Biotechnol 32:272–281

    Article  Google Scholar 

  5. Dutta K, Kundu PP (2014) A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells. Polym Rev 54:401–435

    Article  Google Scholar 

  6. Inan TY, Doğan H, Unveren EE et al (2010) Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane’s properties. Int J Hydrog Energy 35:12038–12053

    Article  Google Scholar 

  7. Zhang H, Li X, Zhao C (2008) Composite membranes based on highly sulfonated PEEK and PBI: morphology characteristics and performance. J Membr Sci 308:66–74

    Article  Google Scholar 

  8. Dutta K, Kumar P, Das S (2014) Utilization of conducting polymers in fabricating polymer electrolyte membranes for application in direct methanol fuel cells. Polym Rev 54:1–32

    Article  Google Scholar 

  9. Dutta K, Das S, Kundu PP (2016) Highly methanol resistant and selective ternary blend membrane composed of sulfonated PVDF-co-HFP, sulfonated polyaniline and nafion. J Appl Polym Sci 133:1–10

    Article  Google Scholar 

  10. Dutta K, Das S, Kundu PP (2016) Effect of the presence of partially sulfonated polyaniline on the proton and methanol transport behavior of partially sulfonated PVdF membrane. Polym J 48:301–309

    Article  Google Scholar 

  11. Kumar P, Dutta K, Das S et al (2014) Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVDF-co-HFP/Nafion: a preliminary evaluation for application in DMFC. Appl Energy 123:66–74

    Article  Google Scholar 

  12. Dutta K, Das S, Kundu PP (2014) Low methanol permeable and highly selective membranes composed of pure and/or partially sulfonated PVDF-co-HFP and polyaniline. J Membr Sci 468:42–51

    Article  Google Scholar 

  13. Cho K-Y, Eom J-Y, Jung H-Y et al (2004) Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC). Electrochim Acta 50:583–588

    Article  Google Scholar 

  14. Yang J, Shen PK, Varcoe J et al (2009) Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. J Power Sources 189:1016–1019

    Article  Google Scholar 

  15. Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101

    Article  Google Scholar 

  16. Das S, Dutta K, Hazra S et al (2015) Partially sulfonated poly(vinylidene fluoride) induced enhancements of properties and DMFC performance of Nafion electrolyte membrane. Fuel Cells 15:505–515

    Article  Google Scholar 

  17. Peighambardoust SJ, Rowshanzamir S, Amjadi M et al (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384

    Article  Google Scholar 

  18. Kumar P, Dutta K, Das S et al (2014) An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int J Energy Res 38:1367–1390

    Article  Google Scholar 

  19. Rinaldi A, Mecheri B, Garavaglia V et al (2008) Traversa, engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1:417–429

    Article  Google Scholar 

  20. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

    Article  Google Scholar 

  21. Baradie B, Dodelet JP, Guay D (2000) Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells. J Electroanal Chem 489:101–105

    Article  Google Scholar 

  22. Shao ZG, Xu H, Li M et al (2006) Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics 177:779–785

    Article  Google Scholar 

  23. Jalani NH, Dunn K, Datta R et al (2005) Synthesis and characterization of Nafion-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560

    Article  Google Scholar 

  24. Park KT, Jung UH, Choi DW et al (2008) ZrO2-SiO2/Nafion composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sour 177:247–253

    Article  Google Scholar 

  25. SaccàA Gatto I, Carbone A et al (2006) ZrO2-Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sour 163:47–51

    Article  Google Scholar 

  26. Pan J, Zhang H, Chen W et al (2010) Nafion-zirconia nanocomposite membranes formed via in situ sol–gel process. Int J Hydrog Energy 35:352796–352801

    Google Scholar 

  27. Woo MH, Kwon O, Choi SH et al (2006) Zirconium phosphate sulfonated poly (fluorinated arylene ether)s composite membranes for PEMFCs at 100–140 °C. Electrochim Acta 51:6051–6059

    Article  Google Scholar 

  28. Costamagna P, Yang C, Bocarsly AB et al (2002) Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C. Electrochim Acta 47:1023–1033

    Article  Google Scholar 

  29. Damay F, Klein LC (2003) Transport properties of NafionTM composite membranes for proton-exchange membranes fuel cells. Solid State Ionics 162–163:261–267

    Article  Google Scholar 

  30. Yang C, Srinivasan S, Bocarsly AB et al (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237:145–161

    Article  Google Scholar 

  31. Mishra AK, Bose S, Kuila T (2012) Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 37:842–869

    Article  Google Scholar 

  32. Adjemian KT, Lee SJ, Srinivasan S (2002) Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140 °C. J Electrochem Soc 149:A256–A261

    Article  Google Scholar 

  33. Pereira F, ValléK Belleville P et al (2008) Advanced mesostructured hybrid silica-nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718

    Article  Google Scholar 

  34. Wang H, Holmberg BA, Huang L et al (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837

    Article  Google Scholar 

  35. Moghaddam S, Pengwang E, Jiang Y-B et al (2010) An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat Nano Technol 5:230–236

    Article  Google Scholar 

  36. Kannan AG, Choudhury NR, Dutta NK (2009) In situ modification of Nafion membranes with phospho-silicate for improved water retention and proton conduction. J Membr Sci 333:50–58

    Article  Google Scholar 

  37. Kim YM, Choi SH, Lee HC et al (2004) Organic-inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta 49:4787–4796

    Article  Google Scholar 

  38. Qi L, Dong SJ (2007) Organic/inorganic nanocomposite polymer electrolyte. Chin Chem Lett 18:185–188

    Article  Google Scholar 

  39. Honma N, Hirakawa S, Yamada K et al (1999) Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol–gel processes. Solid State Ionics 118:29–36

    Article  Google Scholar 

  40. Mahreni A, Mohamad AB, Kadhum AAH et al (2009) Nafion®/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. J Membr Sci 327:32–40

    Article  Google Scholar 

  41. Sahu AK, Selvarani G, Pitchumani S et al (2007) A sol–gel modified alternative Nafion-silica composite membrane for polymer electrolyte fuel cells. J Electrochem Soc 154:B123–B132

    Article  Google Scholar 

  42. Tang HL, Pan M (2008) Synthesis and characterization of a self-assembled Nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells. J Phys Chem C 112:11556–11568

    Article  Google Scholar 

  43. Linlin M, Mishra AK, Kim NH et al (2012) Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411–412:91–98

    Article  Google Scholar 

  44. Suryani S, Chang YN, Lai JY et al (2012) Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J Membr Sci 403–404:1–7

    Article  Google Scholar 

  45. Honma E, Nakajima H, Nishikawa O (2003) Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes. Solid State Ionics 162–163:237–245

    Article  Google Scholar 

  46. Noto VD, Piga M, Piga L et al (2008) New inorganic-organic proton conducting membranes based on Nafion and [(ZrO2).(SiO2)0.67] nanoparticles: synthesis vibrational studies and conductivity. J Power Sources 178:561–574

    Article  Google Scholar 

  47. SaccàA Carbone A, Passalacqua E (2005) Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J Power Sour 152:16–21

    Article  Google Scholar 

  48. Satterfield MB, Majsztrik PW, Ota H et al (2006) Mechanical properties of nafion and titania/nafion composite membranes for polymer electrolyte membrane fuel cells. J Polym Sci Pol Phys 44:2327–2345

    Article  Google Scholar 

  49. Tian JH, Gao PF, Zhu ZY (2008) Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. Int J Hydrog Energy 33:5686–5690

    Article  Google Scholar 

  50. Yang J, Li Y, Huang Y (2008) Dynamic conducting effect of WO3/PFSA membranes on the performance of proton exchange membrane fuel cells. J Power Sour 177:56–60

    Article  Google Scholar 

  51. Şengül E, Erdener H, Akay RG (2009) Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int J Hydrog Energy 34:4645–4652

    Article  Google Scholar 

  52. Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic-inorganic composite membranes for fuel cell applications. Polym Chem 1:388–408

    Article  Google Scholar 

  53. Robert C, ValléK Pereira F et al (2011) Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005

    Article  Google Scholar 

  54. Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    Article  Google Scholar 

  55. Choi MJ, Chae KJ, Ajayi FF (2011) Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour Technol 102:298–303

    Article  Google Scholar 

  56. Dhar BR, Lee HS (2013) Membranes for bioelectrochemical systems: challenges and research advances. Environ Technol 34:1751–1764

    Article  Google Scholar 

  57. Rahimnejad M, Bakeri G, Ghasemi M (2014) A review on the role of proton exchange membrane on the performance of microbial fuel cell. Polym Adv Technol 25:1426–1432

    Article  Google Scholar 

  58. Leong JX, Daud WRW, Ghasemi M (2013) Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew Sustain Energy Rev 28:575–587

    Article  Google Scholar 

  59. Rahimnejad M, Ghasemi M, Najafpour GD (2012) Characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta 85:700–706

    Article  Google Scholar 

  60. Prabhu NV, Sangeetha D (2014) Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell. Chem Eng J 243:564–571

    Article  Google Scholar 

  61. Kumar V, Kumar P, Nandy A (2016) A nanocomposite membrane composed of incorporated nano-alumina within sulfonated PVDF-co-HFP/Nafion blend as separating barrier in a single chambered microbial fuel cell. RSC Adv 6:23571–23580

    Article  Google Scholar 

  62. DasS Dutta K, Shul YG et al (2015) Progress in developments of inorganic nanocatalysts for application in direct methanol fuel cells. Solid State Mater Sci 40:316–357

    Google Scholar 

  63. Dutta K, Das S, Rana D et al (2015) Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs. Polym Rev 55:551–556

    Google Scholar 

  64. Dutta K, Kundu PP, Kundu A (2014) Fuel cells-exploratory fuel cells micro-fuel cells. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, London

    Google Scholar 

  65. Kumar P, Dutta K, Kundu PP (2014) Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. Int J Energy Res 38:41–50

    Article  Google Scholar 

  66. Dutta K, Das S, Kundu PP (2015) Synthesis, preparation and performance of blends and composites of π-conjugated polymers and their copolymers in DMFCs. Polym Rev 55:630–677

    Article  Google Scholar 

  67. Das S, Kumar P, Dutta K et al (2014) Partial sulfonation of PVDF-co-HFP: a preliminary study and characterization for application in direct methanol fuel cell. Appl Energy 113:169–177

    Article  Google Scholar 

  68. Dutta K, Das S, Kumar P et al (2014) Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: a preliminary study based on blends of partially sulfonated polymers polyaniline and PVDF-co-HFP. Appl Energy 118:183–191

    Article  Google Scholar 

  69. Kumar GG, Lee DN, Kim P et al (2008) Characterization of PVDF-HFP/Nafion/Al[OH] n composite membranes for direct methanol fuel cell (DMFC). Eur Polym J 44:2225–2230

    Article  Google Scholar 

  70. Kumar P, Singh AD, Kumar V et al (2015) Incorporation of nano-Al2O3 within the blend of sulfonated-PVDF-co-HFP and Nafion for high temperature application in DMFCs. RSC Adv 5:63465–63472

    Article  Google Scholar 

  71. Baglio V, Aricò AS, Blasi AD et al (2005) Nafion-TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochim Acta 50:1241–1246

    Article  Google Scholar 

  72. Licoccia S, Traversa E (2006) Increasing the operation temperature of polymer electrolyte membranes for fuel cells: from nanocomposites to hybrids. J Power Sour 159:12–20

    Article  Google Scholar 

  73. Kumar GG, Shin J, Nho YC et al (2010) Irradiated PVDF-HFP-tin oxide composite membranes for the applications of direct methanol fuel cells. J Membr Sci 350:92–100

    Article  Google Scholar 

  74. Mecheri B, Epifanio AD, Traversa E et al (2008) Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. J Power Sour 178:554–560

    Article  Google Scholar 

  75. Mu S, Tang H, Wan Z et al (2005) Au nanoparticles self-assembled onto nafion membranes for use as methanol-blocking barriers. Electrochem Commun 7:1143–1147

    Article  Google Scholar 

  76. Liang ZX, Shi JY, Liao SJ et al (2010) Noble metal nanowires incorporated Nafion membranes for reduction of methanol crossover in direct methanol fuel cells. Int J Hydrog Energy 35:9182–9185

    Article  Google Scholar 

  77. Tang H, Pan M, Jiang S et al (2005) Self-assembling multi-layer Pd nanoparticles onto NafionTM membrane to reduce methanol crossover. Colloids Surf A 262:65–70

    Article  Google Scholar 

  78. Park HS, Kim YJ, Choi YS et al (2008) Surface chemistry and physical properties of nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. J Power Sour 178:610–619

    Article  Google Scholar 

  79. Tian AH, Kim JY, Shi JY et al (2009) Surface-modified nafion membrane by trioctylphosphine-stabilized palladium nanoparticles for DMFC applications. J Phys Chem Solids 70:1207–1212

    Article  Google Scholar 

  80. Chen Z, Holmberg B, Li W et al (2006) Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater 18:5669–5675

    Article  Google Scholar 

  81. Jung DH, Cho SY, Peck DH et al (2003) Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sour 118:205–211

    Article  Google Scholar 

  82. Dimitrova P, Friedrich KA, Stimming U (2002) Modified nafion-based membranes for use in direct methanol fuel cells. Solid State Ionics 150:115–122

    Article  Google Scholar 

  83. Dimitrova P, Friedrich KA, Vogt B et al (2002) Transport properties of ionomer composite membranes for direct methanol fuel cells. J Electroanal Chem 532:75–83

    Article  Google Scholar 

  84. Chang JH, Park JH, Park GG et al (2003) Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sour 124:18–25

    Article  Google Scholar 

  85. Jaafar J, Ismail AF, Matsuura T (2012) Effect of dispersion state of cloisite15A on the performance of SPEEK/Cloisite15A nanocomposite membrane for DMFC application. J Appl Polym Sci 124:969–977

    Article  Google Scholar 

  86. Aricò AS, Baglio V, Blasi AD et al (2004) Surface properties of inorganic fillers for application in composite membranes-direct methanol fuel cells. J Power Sour 128:113–118

    Article  Google Scholar 

  87. Aricò AS, Baglio V, Blasi AD (2003) FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes. Electrochem Commun 5:862–866

    Article  Google Scholar 

  88. Aricò AS, Baglio V, Blasi AD (2003) Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics 161:251–265

    Article  Google Scholar 

  89. Mat NC, Liong A (2009) Chitosan-poly (vinyl alcohol) and calcium oxide composite membrane for direct methanol fuel cell applications. Eng Lett 17:14–17

    Google Scholar 

  90. Silva VS, Ruffmann B, Silva H et al (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance I characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes. J Power Sour 140:34–40

    Article  Google Scholar 

  91. Kim DS, Park HB, Rhim JW (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240:37–48

    Article  Google Scholar 

  92. Staiti P, Aricò AS, Baglio V et al (2001) Hybrid nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics 145:101–107

    Article  Google Scholar 

  93. Chen CY, Garnica JI, Rodriguez MC, Duke MC et al (2007) Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. J Power Sour 166:324–330

    Article  Google Scholar 

  94. Fu RQ, Woo JJ, Seo SJ et al (2008) Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations. J Power Sour 179:458–466

    Article  Google Scholar 

  95. Zhang Y, Cai W, Si F et al (2012) A modified Nafion membrane with extremely low methanol permeability via surface coating of sulfonated organic silica. Chem Commun 48:2870–2872

    Article  Google Scholar 

  96. Xiong Y, Liu QL, Zhu AM et al (2009) Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J Power Sour 186:328–333

    Article  Google Scholar 

  97. Sahu AK, Bhat SD, Pitchumani S et al (2009) Novel organic-inorganic composite polymer-electrolyte membranes for DMFCs. J Membr Sci 345:305–314

    Article  Google Scholar 

  98. Tohidian M, Ghaffarian SR, Nouri M et al (2015) Polyelectrolyte nanocomposite membranes using imidazole-functionalized nanosilica for fuel cell applications. J Macromol Sci Phys 54:17–31

    Article  Google Scholar 

  99. Lin H, Zhao C, Jiang Y et al (2011) Novel hybrid polymer electrolyte membranes with high proton conductivity prepared by a silane-crosslinking technique for direct methanol fuel cells. J Power Sour 196:1744–1749

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingshuk Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dutta, K. (2017). Polymer-Inorganic Nanocomposites for Polymer Electrolyte Membrane Fuel Cells. In: Lin, Z., Yang, Y., Zhang, A. (eds) Polymer-Engineered Nanostructures for Advanced Energy Applications. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-57003-7_15

Download citation

Publish with us

Policies and ethics