Skip to main content

Abstract

Ionic channels belong to the group of the most important proteins. Not only do they enable transmembrane transport but they are also the key factors for proper cell function. Mutations changing their structure and functionality often lead to severe diseases called channelopathies. On the other hand, transmembrane channels are very difficult objects for experimental studies. Only 2% of experimentally identified structures are transmembrane proteins, while genomic studies show that transmembrane proteins make up 30% of all coded proteins. This gap could be diminished by bioinformatical methods which enable modeling unknown protein structures, functions, transmembrane location, and ligand binding. Several in silico methods dedicated to transmembrane proteins have been developed; some general methods could also be used. They provide the information unavailable from experiments. Current modeling tools use a variety of computational methods, which provide results of surprisingly high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamian L, Nanda V, DeGrado WF, Liang J (2005) Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. Proteins 59:496–509

    Article  CAS  PubMed  Google Scholar 

  • Aityan SK, Chizmadzhev Y (1986) Simulation of molecular dynamics of water movement in ion channels. Gen Physiol Biophys 5(3):213–229

    CAS  PubMed  Google Scholar 

  • Alford RF, Koehler Leman J, Weitzner BD, Duran AM, Tilley DC, Elazar A, Gray JJ (2015) An integrated framework advancing membrane protein modeling and design. PLoS Comput Biol 11(9):e1004398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashcroft FM (2006) From molecule to malady. Nature 440:440–447

    Article  CAS  PubMed  Google Scholar 

  • Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004) PRED-TMBB: a web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res 32:W400–W404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth P, Schonbrun J, Baker D (2007) Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci 104:15682–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bek S, Jakobsson E (1994) Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels. Biophys J 66(4):1028–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. PNAS 105(20):7177–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berti C, Furini S, Gillespie D, Boda D, Eisenberg RS, Sangiorgi E, Fiegna C (2014) Three-dimensional Brownian dynamics simulator for the study of ion permeation through membrane pores. J Chem Theory Comput 10(8):2911–2926

    Article  CAS  PubMed  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(W1):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigelow H, Rost B (2006) PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Res 34:W186–W188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisset D, Chung SH (2008) Efficacy of external tetrae-thylammonium block of the KcsA potassium channel: molecular and Brownian dynamics studies. Biochim Biophys Acta 1778(10):2273–2282

    Article  CAS  PubMed  Google Scholar 

  • Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 206:757–761

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2(11):2728–2733

    Article  CAS  PubMed  Google Scholar 

  • Burykin A, Kato M, Warshel A (2003) Exploring the origin of the ion selectivity of the KcsA potassium channel. Proteins 52(3):412–426

    Article  CAS  PubMed  Google Scholar 

  • Callebaut I, Hoffmann B, Lehn P, Mornon JP (2017) Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 74(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Chang J-M, Di Tommaso P, Taly J-F, Notredame C (2012) Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinformatics 13(Suppl 4):S

    Article  CAS  Google Scholar 

  • Chaudhry JH, Comer J, Aksimentiev A, Olson LN (2014) A stabilized finite element method for modified Poisson-Nernst-Planck equations to determine ion flow through a nanopore. Commun Comput Phys 15(1):93–125

    Google Scholar 

  • Chen PC, Kuyucak S (2011) Accurate determination of the binding free energy for KcsA-Charybdotoxin complex from the potential of mean force calculations with restraints. Biophys J 100:2466–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KYM, Sun J, Salvo JS, Baker D, Barth P (2014) High-resolution modeling of transmembrane helical protein structures from distant homologues. PLoS Comput Biol 10(5):e1003636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiu SW, Pandit SA, Scott HL, Jakobsson E (2009) An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B 113:2748–2763

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Kuyucak S (2002) Ion channels: recent progress and prospects. Eur Biophys J 31:283–293

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Allen TW, Hoyles M, Kuyucak S (1999) Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys J 77(5):2517–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clote P, Waldispuhl J, Berger B, Steyaert JM (2006) transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels. Nucleic Acids Res 34:W189–W193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coalson RD, Cheng MH (2010) Discrete-state representation of ion permeation coupled to fast gating in a model of ClC chloride channels: comparison to multi-ion continuous space Brownian dynamics simulations. J Phys Chem B 114(3):1424–1433

    Article  CAS  PubMed  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  • Cowen L, Bradley P, Menke M, King J, Berger B (2002) Predicting the beta-helix fold from protein sequence data. J Comput Biol 9:261–276

    Article  CAS  PubMed  Google Scholar 

  • Cozmuta I, O’Keeffe JT, Bose D, Stolc V (2005) Hybrid MD-Nernst Planck model of α-hemolysin conductance properties. Mol Simul 31:79–93

    Article  CAS  Google Scholar 

  • Cui M, Shen J, Briggs JM, Luo X, Tan X, Jiang H, Chen K, Ji R (2001) Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophys J 80(4):1659–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delemotte L, Klein ML, Tarek M (2012) Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 3:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dlugosz M, Zielinski P, Trylska J (2011) Brownian dynamics simulations on CPU and GPU with BD_BOX. J Comput Chem 32:2734–2744

    Article  CAS  PubMed  Google Scholar 

  • Dobson L, Remenyi I, Tusnady GE (2015) CCTOP: a consensus constrained TOPology prediction web server. Nucleic Acids Res 43:W408–W412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domanski J, Stansfeld PJ, Sansom MSP, Beckstein O (2010) Lipidbook: a public repository for force-field parameters used in membrane simulations. J Membr Biol 236:255–258

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  • Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB (1994) Theoretical models of the ion channel structure of amyloid beta-protein. Biophys J 67(6):2137–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyrka W, Augousti AT, Kotulska M (2008) Ion flux through membrane channels-an enhanced algorithm for the Poisson-Nernst-Planck model. J Comput Chem 29:1876–1888

    Article  CAS  PubMed  Google Scholar 

  • Dyrka W, Bartuzel MM, Kotulska M (2013) Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels. Proteins 81(10):1802–1822

    Article  CAS  PubMed  Google Scholar 

  • Dyrka W, Kurczyńska M, Konopka BM, Kotulska M (2016) Fast assessment of structural models of ion channels based on their predicted current-voltage characteristics. Proteins 84(2):217–231

    Article  CAS  PubMed  Google Scholar 

  • Edwards S, Corry B, Kuyucak S, Chung SH (2002) Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys J 83(3):1348–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elokely K, Velisetty P, Delemotte L, Palovcak E, Klein ML, Rohacs T, Carnevale V (2016) Understanding TRPV1 activation by ligands: insights from the binding modes of capsaicin and resiniferatoxin. PNAS 113(2):E137–E145

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Brickmann J (1983) Ion-specific diffusion rates through transmembrane protein channels. A molecular dynamics study. Biophys Chem 18(4):323–337

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY, Fernández-Suárez XM, Rigden DJ (2017) The 24th annual nucleic acids research database issue: a look back and upcoming changes. Nucleic Acids Res 45:D1–D11

    Article  PubMed  Google Scholar 

  • Gianti E, Delemotte L, Klein ML, Carnevale V (2016) On the role of water density fluctuations in the inhibition of a proton channel. PNAS 113(52):E8359–E8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanasambandam R, Ghatak C, Yasmann A, Nishizawa K, Sachs F, Ladokhin AS, Sukharev SI, Suchyna TM (2017) GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys J 112(1):31–45

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Chung SH (2011) Permeation and block of the Kv1.2 channel examined using brownian and molecular dynamics. Biophys J 101:2671–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon D, Chung SH (2012) Extension of Brownian dynamics for studying blockers of ion channels. J Phys Chem B 116(49):14285–14294

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Elofsson A (2012) BOCTOPUS: improved topology prediction of transmembrane β barrel proteins. Bioinformatics 28(4):516–522

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Sander C, Marks DS, Elofsson A (2015) All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences. PNAS 112(17):5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Peters C, Shu N, Tsirigos KD, Elofsson A (2016) Inclusion of dyad-repeat pattern improves topology prediction of transmembrane β-barrel proteins. Bioinformatics 32(10):1571–1573

    Article  CAS  PubMed  Google Scholar 

  • Hill JR, Deane CM (2013) MP-T: improving membrane protein alignment for structure prediction. Bioinformatics 29(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Hinard V, Britan A, Schaeffer M, Zahn-Zabal M, Thomet U, Rougier JS, Bairoch A, Abriel H, Gaudet P (2017) Annotation of functional impact of voltage-gated sodium channel mutations. Hum Mutat 38:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse RE, Sachleben JR, Wen P-C, Moradi M, Tajkhorshid E, Perozo E (2014) Conformational dynamics at the inner gate of KcsA during activation. Biochemistry 53:2557–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Im W, Roux B (2002) Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol 322(4):851–869

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R (2014) Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 43(19):6750–6764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernigan RL, Bahar I (1996) Structure-derived potentials and protein simulations. Curr Opin Struct Biol 6:195–209

    Article  CAS  PubMed  Google Scholar 

  • Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, DeGrado WF (2014) De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346:1520–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Buchan DW, Cozzetto D, Pontil M (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28(2):184–190

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Kall L, Krogh A, Sonnhammer ELL (2007) Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res 35:W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  • Kappas U, Fischer W, Polymeropoulos EE, Brickmann J (1985) Solvent effects in ionic transport through transmembrane protein channels. J Theor Biol 112(3):459–464

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26(22):2833–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  • Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins 83(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Konopka BM, Dyrka W, Nebel JC, Kotulska M (2009) Accuracy in predicting secondary structure of ionic channels. Stud Comp Intell 244:315–326

    Google Scholar 

  • Konopka BM, Ciombor M, Kurczynska M, Kotulska M (2014) Automated procedure for contact-map-based protein structure reconstruction. J Membr Biol 247(5):409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortemme T, Morozov AV, Baker D (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 326:1239–1259

    Article  CAS  PubMed  Google Scholar 

  • Kozma D, Tusnady GE (2015) TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool. BMC Bioinformatics 16:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozma D, Simon I, Tusnady GE (2013) PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529

    Article  CAS  PubMed  Google Scholar 

  • Krammer EM, Homble F, Prevost M (2013) Molecular origin of VDAC selectivity towards inorganic ions: a combined molecular and Brownian dynamics study. Biochim Biophys Acta 1828(4):1284–1292

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy V, Vora T, Chung SH (2007) Adaptive Brownian dynamics for shape estimation of sodium ion channels. J Nanosci Nanotechnol 7(7):2273–2282

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  • Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173

    Article  CAS  PubMed  Google Scholar 

  • Kurczynska M, Kotulska M (2014) Ion Move Brownian Dynamics (IMBD) – simulations of ion transport. Acta Bioeng Biomech 16(4):107–116

    PubMed  Google Scholar 

  • Kuyucak S, Norton RS (2014) Computational approaches for designing potent and selective analogs of peptide toxins as novel therapeutics. Future Med Chem 6(15):1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. PNAS 93(25):14532–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaridis T (2003) Effective energy function for proteins in lipid membranes. Proteins 52:176–192

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution. Proteins 35:133–152

    Article  CAS  PubMed  Google Scholar 

  • Leaver-Fay A, O’Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, Thompson J, Davis IW, Pache RA, Lyskov S, Gray JJ, Kortemme T, Richardson JS, Havranek JJ, Snoeyink J, Baker D, Kuhlman B (2013) Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol 523:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KI, Jo S, Rui H, Egwolf B, Roux B, Pastor RW, Im W (2012) Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores. J Comput Chem 33(3):331–339

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Eisenberg B (2015) Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels. Phys Rev E Stat Nonlinear Soft Matter Phys 92(1):012711

    Article  CAS  Google Scholar 

  • Liu Z, Xu Y, Tang P (2005) Molecular dynamics simulations of C2F6 effects on gramicidin a: implications of the mechanisms of general anesthesia. Biophys J 88(6):3784–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376

    Article  CAS  PubMed  Google Scholar 

  • Lomize AL, Lomize MA, Krolicki SR, Pogozheva ID (2016) Membranome: a database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res 45(D1):D250–D255

    Article  PubMed  PubMed Central  Google Scholar 

  • Maciejewski A, Pasenkiewicz-Gierula M, Cramariuc O, Vattulainen I, Rog T (2014) Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration. J Phys Chem B 118:4571–4581

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem 102:3586–3616

    Article  CAS  Google Scholar 

  • MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265

    Article  CAS  PubMed  Google Scholar 

  • Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6(12):e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsico A, Scheubert K, Tuukkanen A, Henschel A, Winter C, Winnenburg R, Schroeder M (2010) MeMotif: a database of linear motifs in alpha-helical transmembrane proteins. Nucleic Acids Res 38:D181–D189

    Article  CAS  PubMed  Google Scholar 

  • Medovoy D, Perozo E, Roux B (2016) Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Biochim Biophys Acta 1858(7 Pt B):1722–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XY, Liu S, Cui M, Zhou R, Logothetis DE (2016) The molecular mechanism of opening the helix bundle crossing (HBC) gate of a Kir channel. Sci Rep 6:29399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina ML, Giudici AM, Poveda JA, Fernandez-Ballester G, Mon-toya E, Renart ML, Fernandez AM, Encinar JA, Riquelme G, Morales A, Gonzalez-Ros JM (2015) Competing lipid-protein and protein-protein interactions determine clustering and gating patterns in the potassium channel from streptomyces lividans (KcsA). J Biol Chem 290(42):25745–25755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monticelli L, Robertson KM, MacCallum JL, Tieleman DP (2004) Computer simulation of the KvAP voltage-gated potassium channel: steered molecular dynamics of the voltage sensor. FEBS Lett 564(3):325–332

    Article  CAS  PubMed  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  PubMed  Google Scholar 

  • Muirhead H, Perutz M (1963) Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution. Nature 199:633–638

    Article  CAS  PubMed  Google Scholar 

  • Noskov SY, Im W, Roux B (2004) Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Biophys J 87(4):2299–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  CAS  PubMed  Google Scholar 

  • Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nugent T, Jones DT (2012) Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. PNAS 109(24):E1540–E1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Mara M, Cromer B, Parker M, Chung SH (2005) Homology model of the GABAA receptor examined using Brownian dynamics. Biophys J 88(5):3286–3299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oakes V, Furini S, Domene C (2016) Voltage-gated sodium channels: mechanistic insights from atomistic molecular dynamics simulations. Curr Top Membr 78:183–214

    Article  CAS  PubMed  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  • Pannuzzo M, Raudino A, Milardi D, La Rosa C, Karttunen M (2013) α-helical structures drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes. Sci Rep 3:2781

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirovano W, Feenstra KA, Heringa J (2008) PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24(4):492–497

    Article  CAS  PubMed  Google Scholar 

  • Pluhackova K, Bockmann RA (2015) Biomembranes in atomistic and coarse-grained simulations. J Phys Condens Matter 27:32310

    Article  CAS  Google Scholar 

  • Randall A, Cheng J, Sweredoski M, Baldi P (2008) TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24:513–520

    Article  CAS  PubMed  Google Scholar 

  • Restrepo-Angulo I, Vizcaya-Ruizb A, Camacho J (2010) Ion channels in toxicology. J Appl Toxicol 30:497–512

    Article  CAS  PubMed  Google Scholar 

  • Roux B, Karplus M (1994) Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct 23:731–761

    Article  CAS  PubMed  Google Scholar 

  • Roy Choudhury A, Novic M (2015) PredβTM: a novel β-transmembrane region prediction algorithm. PLoS One 10(12):e0145564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379

    Article  CAS  PubMed  Google Scholar 

  • Schirmer T, Phale PS (1999) Brownian dynamics simulation of ion flow through porin channels. J Mol Biol 294(5):1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Seyler S, Beckstein O (2014) Sampling large conformational transitions: adenylate kinase as a testing ground. Mol Simul 40:855–877

    Article  CAS  Google Scholar 

  • Shaw DE (2005) A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. J Comput Chem 26:1318–1328

    Article  CAS  PubMed  Google Scholar 

  • Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Chou JJ (2008) MemBrain: improving the accuracy of predicting transmembrane helices. PLoS One 3(6):e2399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268(1):209–225

    Article  CAS  PubMed  Google Scholar 

  • Siu SWI, Pluhackova K, Bockmann RA (2012) Optimization of the OPLS-AA force field for long hydrocarbons. J Chem Theory Comput 8:1459–1470

    Article  CAS  PubMed  Google Scholar 

  • Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song Y, Tyka M, Leaver-Fay A, Thompson J, Baker D (2011) Structure-guided forcefield optimization. Proteins 79:1898–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillane J, Kullmann DM, Hanna MG (2016) Genetic neurological channelopathies: molecular genetics and clinical phenotypes. J Neurol Neurosurg Psychiatry 87:37–48

    CAS  PubMed  Google Scholar 

  • Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MSP (2015) MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23(7):1350–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor PD, Toseland CP, Attwood TK, Flower DR (2006) Beta barrel trans-membrane proteins: enhanced prediction using a Bayesian approach. Bioinformation 1(6):231–233

    PubMed  PubMed Central  Google Scholar 

  • Thomas PD, Dill KA (1996) An iterative method for extracting energy-like quantities from protein structures. PNAS 93:11628–11633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieleman D (2012) Computer Simulation of Membrane Dynamics. In: Egelman EH (ed) Comprehensive biophysics. Academic, Oxford, pp 312–336

    Google Scholar 

  • Tsaousis GN, Tsirigos KD, Andrianou XD, Liakopoulos TD, Bagos PG, Hamodrakas SJ (2010) ExTopoDB: a database of experimentally derived topological models of transmembrane proteins. Bioinformatics 26:2490–2492

    Article  CAS  PubMed  Google Scholar 

  • Turchenkov DA, Bystrov VS (2014) Conductance simulation of the purinergic P2X2, P2X4, and P2X7 ionic channels using a combined Brownian dynamics and molecular dynamics approach. J Phys Chem B 118(31):9119–9127

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Kalmar L, Simon I (2008a) TOPDB: topology data bank of transmembrane proteins. Nucleic Acids Res 36:D234–D239

    Article  CAS  PubMed  Google Scholar 

  • Tusnady GE, Kalmar L, Hegyi H, Tompa P, Simon I (2008b) TOPDOM: database of domains and motifs with conservative location in transmembrane proteins. Bioinformatics 24:1469–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ujwal R, Abramson J (2012) High-throughput crystallization of membrane proteins using the Lipidic Bicelle method. J Vis Exp 59:e3383

    Google Scholar 

  • Ulmschneider MB, Ulmschneider JP, Schiller N, Wallace BA, von Heijne G, White SH (2014) Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat Commun 5:4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viklund H, Elofsson A (2004) Best α-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13(7):1908–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15):1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Waldispuhl J, O’Donnell CW, Devadas S, Clote P, Berger B (2008) Modeling ensembles of transmembrane beta-barrel proteins. Proteins 71:1097–1112

    Article  CAS  PubMed  Google Scholar 

  • Wang H, He Z, Zhang C, Zhang L, Xu D (2013) Transmembrane protein alignment and fold recognition based on predicted topology. PLoS One 8(7):e69744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang M, Zhai J, Jiang L (2014) Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson-Nernst-Planck (PNP) model. Phys Chem 16(1):23–32

    Google Scholar 

  • Wanga S, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26

    Article  CAS  Google Scholar 

  • Wassenaar TA, Ingolfsson HI, Priess M, Marrink SJ, Schafer LV (2013) Mixing MARTINI: electrostatic coupling in hybrid atomistic coarse-grained biomolecular simulations. J Phys Chem B 117:3516–3530

    Article  CAS  PubMed  Google Scholar 

  • Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37

    Article  Google Scholar 

  • Webster G, Berul CI (2013) An update on Channelopathies from mechanisms to management. Circulation 127:126–140

    Article  PubMed  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  • Weiner BE, Woetzel N, Karakaş M, Alexander N, Meiler J (2013) BCL∷MP-fold: folding membrane proteins through assembly of transmembrane helices. Struct Lond Engl 21:1107–1117

    CAS  Google Scholar 

  • Woetzel N, Karakas M, Staritzbichler R, Muller R, Weiner BE, Meiler J (2012) BCL::score-knowledge based energy potentials for ranking protein models represented by idealized secondary structure elements. PLoS One 7:e49242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins Struct Funct Bioinformatics 62:1010–1025

    Article  CAS  Google Scholar 

  • Zhang T, Kolinski A, Skolnick J (2003) TOUCHSTONE:II a new approach to ab initio protein structure prediction. Biophys J 85:1145–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulpo M, Kotulska M (2015) Comparative modeling of hypothetical amyloid pores based on cylindrin. J Mol Model 21(6):151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Kurczyńska would like to acknowledge the funding from “Diamond Grant” DI2011 002141. The work was also partly funded by the Statutory Funds of Wroclaw University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Kotulska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurczyńska, M., Konopka, B.M., Kotulska, M. (2017). Role of Bioinformatics in the Study of Ionic Channels. In: Kulbacka, J., Satkauskas, S. (eds) Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy. Advances in Anatomy, Embryology and Cell Biology, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-56895-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56895-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56894-2

  • Online ISBN: 978-3-319-56895-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics