Skip to main content

Infections in Combat-Related Wounds

  • Chapter
  • First Online:
Reconstructing the War Injured Patient

Abstract

The relationship of armed conflicts and the occurrence of infectious diseases has been well established. Improved survival rates in both soldiers and civilians with war injuries have resulted in an increased risk of acquiring wound infections among those affected. Early diagnosis of a wound infection is crucial as a failure to do so results in delayed wound healing, prolonged hospital stay, and systemic complications such as sepsis. Wound microbiology changes over time from an even balance between gram-positive and gram-negative pathogens in early stages to mostly gram-negative bacteria that are resistant to commonly used antibiotics during the later phases of treatment. This emergence of multidrug resistant organisms is a major problem facing both military and civilian facilities handling causalities of war. This chapter explores different aspects of combat-related wound infections including its pathophysiology, diagnosis, microbiology, emergence of antimicrobial resistance, and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakhach J, Abu-Sitta G, Dibo S. Reconstruction of blast injuries of the hand and upper limb. Injury. 2013;44(3):305–12.

    Article  PubMed  Google Scholar 

  2. Peretz A, Labay K, Zonis Z, Glikman D. Disengagement does not apply to bacteria: a high carriage rate of antibiotic-resistant pathogens among Syrian civilians treated in Israeli hospitals. Clin Infect Dis. 2014;59(5):753–4.

    Article  PubMed  Google Scholar 

  3. Biswas S, Waksman I, Baron S, Fuchs D, Rechnitzer H, Dally N, et al. Analysis of the first 100 patients from the Syrian Civil War treated in an Israeli District Hospital. Ann Surg. 2016;263(1):205–9.

    Article  PubMed  Google Scholar 

  4. Glance LG, Stone PW, Mukamel DB, Dick AW. Increases in mortality, length of stay, and cost associated with hospital-acquired infections in trauma patients. Arch Surg. 2011;146(7):794–801.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Al-Assil B, Mahfoud M, Hamzeh AR. Resistance trends and risk factors of extended spectrum β-lactamases in Escherichia coli infections in Aleppo, Syria. Am J Infect Control. 2013;41(7):597–600.

    Article  CAS  PubMed  Google Scholar 

  6. Blyth DM, Mende K, Weintrob AC, Beckius ML, Zera WC, Bradley W, et al. Resistance patterns and clinical significance of Candida colonization and infection in combat-related injured patients from Iraq and Afghanistan. In: Open forum infectious diseases. New York: Oxford University Press; 2014.

    Google Scholar 

  7. Gordon W, Kuhn K, Staeheli G, Dromsky D. Challenges in definitive fracture management of blast injuries. Curr Rev Musculoskelet Med. 2015;8(3):290–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gayer M, Legros D, Formenty P, Connolly MA. Conflict and emerging infectious diseases. Emerg Infect Dis. 2007;13(11):1625.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ho ZJM, Hwang YFJ, Lee JMV. Emerging and re-emerging infectious diseases: challenges and opportunities for militaries. Mil Med Res. 2014;1(1):1.

    Article  Google Scholar 

  10. Murray CK, Horvath LL. An approach to prevention of infectious diseases during military deployments. Clin Infect Dis. 2007;44(3):424–30.

    Article  PubMed  Google Scholar 

  11. Murray CK. Infectious disease complications of combat-related injuries. Crit Care Med. 2008;36(7):S358–64.

    Article  PubMed  Google Scholar 

  12. Pruitt Jr BA. Combat casualty care and surgical progress. Ann Surg. 2006;243(6):715–29.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murray CK, Wilkins K, Molter NC, Li F, Yu L, Spott MA, et al. Infections complicating the care of combat casualties during operations Iraqi Freedom and Enduring Freedom. J Trauma. 2011;71(1 Suppl):S62–73.

    Article  PubMed  Google Scholar 

  14. Sahli Z, Bizri A, Abu-Sittah G. Microbiology and risk factors associated with war-related wound infections in the Middle East. Epidemiol Infect. 2016;144(13):2848–57.

    Article  CAS  PubMed  Google Scholar 

  15. Teicher CL, Ronat JB, Fakhri RM, Basel M, Labar AS, Herard P, et al. Antimicrobial drug–resistant bacteria isolated from Syrian War–Injured Patients, August 2011–March 2013. Emerg Infect Dis. 2014;20(11):1949–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bowler P, Duerden B, Armstrong D. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14(2):244–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duerden BI. Virulence factors in anaerobes. Clin Infect Dis. 1994;18(Suppl 4):S253–9.

    Article  PubMed  Google Scholar 

  18. Brook I, Randolph JG. Aerobic and anaerobic bacterial flora of burns in children. J Trauma Acute Care Surg. 1981;21(4):313–8.

    Article  CAS  Google Scholar 

  19. Brook I, Frazier EH. Aerobic and anaerobic microbiology of infection after trauma. Am J Emerg Med. 1998;16(6):585–91.

    Article  CAS  PubMed  Google Scholar 

  20. Brook I. A 12 year study of aerobic and anaerobic bacteria in intra-abdominal and postsurgical abdominal wound infections. Surg Gynecol Obstet. 1989;169(5):387–92.

    CAS  PubMed  Google Scholar 

  21. Diggins FW. The true history of the discovery of penicillin, with refutation of the misinformation in the literature. Br J Biomed Sci. 1999;56(2):83.

    CAS  PubMed  Google Scholar 

  22. Hohn D, MacKay RD, Halliday B, Hunt TK. Effect of O2 tension on microbicidal function of leukocytes in wounds and in vitro. Surg Forum. 1976;27(62):18–20.

    CAS  PubMed  Google Scholar 

  23. Niinikoski J, Gottrup F, Hunt TK. The role of oxygen in wound repair. In: Wound healing. Petersfield: Wrightson Biomedical Publishing; 1991. p. 165–74.

    Google Scholar 

  24. Vindenes H, Bjerknes R. Microbial colonization of large wounds. Burns. 1995;21(8):575–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bowler PG, Davies BJ. The microbiology of infected and noninfected leg ulcers. Int J Dermatol. 1999;38(8):573–8.

    Article  CAS  PubMed  Google Scholar 

  26. Sapico FL, Witte JL, Canawati HN, Montgomerie JZ, Bessman AN. The infected foot of the diabetic patient: quantitative microbiology and analysis of clinical features. Rev Infect Dis. 1984;6(Suppl 1):S171–6.

    Article  PubMed  Google Scholar 

  27. Robson MC, Heggers JP. Delayed wound closures based on bacterial counts. J Surg Oncol. 1970;2(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  28. Bendy Jr R, Nuccio PA, Wolfe E, Collins B, Tamburro C, Glass W, et al. Relationship of quantitative wound bacterial counts to healing of decubiti: effect of topical gentamicin. Antimicrob Agents Chemother. 1963;10:147–55.

    Google Scholar 

  29. Burns TC, Stinner DJ, Mack AW, Potter BK, Beer R, Eckel TT, et al. Microbiology and injury characteristics in severe open tibia fractures from combat. J Trauma Acute Care Surg. 2012;72(4):1062–7.

    Article  PubMed  Google Scholar 

  30. Be NA, Allen JE, Brown TS, Gardner SN, McLoughlin KS, Forsberg JA, et al. Microbial profiling of combat wound infection through detection microarray and next-generation sequencing. J Clin Microbiol. 2014;52(7):2583–94.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bennett P, Sargeant ID, Myatt RW, Penn-Barwell JG. The management and outcome of open fractures of the femur sustained on the battlefield over a ten-year period. Bone Joint J. 2015;97(6):842–6.

    Article  PubMed  Google Scholar 

  32. Tintle SM, Shawen SB, Forsberg JA, Gajewski DA, Keeling JJ, Andersen RC, et al. Reoperation after combat-related major lower extremity amputations. J Orthop Trauma. 2014;28(4):232–7.

    Article  PubMed  Google Scholar 

  33. Senanayake EL, Poon H, Graham TR, Midwinter MJ. UK specialist cardiothoracic management of thoracic injuries in military casualties sustained in the wars in Iraq and Afghanistan. Eur J Cardiothorac Surg. 2014;45(6):3202–7.

    Article  Google Scholar 

  34. Murphy RA, Ronat JB, Fakhri RM, Herard P, Blackwell N, Abgrall S, et al. Multidrug-resistant chronic osteomyelitis complicating war injury in Iraqi civilians. J Trauma Acute Care Surg. 2011;71(1):252–4.

    Article  Google Scholar 

  35. Petersen K, Riddle MS, Danko JR, Blazes DL, Hayden R, Tasker SA, et al. Trauma-related infections in battlefield casualties from Iraq. Ann Surg. 2007;245(5):803–11.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murray CK, Roop SA, Hospenthal DR, Dooley DP, Wenner K, Hammock J, et al. Bacteriology of war wounds at the time of injury. Mil Med. 2006;171(9):826–9.

    Article  PubMed  Google Scholar 

  37. Barhoum M, Tobias S, Elron M, Sharon A, Heija T, Soustiel JF. Syria civil war: outcomes of humanitarian neurosurgical care provided to Syrian wounded refugees in Israel. Brain Inj. 2015;29(11):1370–5.

    Article  PubMed  Google Scholar 

  38. Aras M, Altaş M, Yilmaz A, Serarslan Y, Yilmaz N, Yengil E, et al. Being a neighbor to Syria: a retrospective analysis of patients brought to our clinic for cranial gunshot wounds in the Syrian civil war. Clin Neurol Neurosurg. 2014;125:222–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wolf DG, Polacheck I, Block C, Sprung CL, Muggia-Sullam M, Wolf YG, et al. High rate of candidemia in patients sustaining injuries in a bomb blast at a marketplace: a possible environmental source. Clin Infect Dis. 2000;31(3):712–6.

    Article  CAS  PubMed  Google Scholar 

  40. Simchen E, Raz R, Stein H, Danon Y. Risk factors for infection in fracture war wounds (1973 and 1982 wars, Israel). Mil Med. 1991;156(10):520–7.

    CAS  PubMed  Google Scholar 

  41. Sidi Y, Bogokowski B, Tsur H, Tavdioglu B, Rubinstein E. Infectious complications of burns casualties during the Yom-Kippur war. Infection. 1977;5(4):214–8.

    Article  CAS  PubMed  Google Scholar 

  42. Simchen E, Sacks T. Infection in war wounds: experience during the 1973 October War in Israel. Ann Surg. 1975;182(6):754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romanoff H. Prevention of infection in war chest injuries. Ann Surg. 1975;182(2):144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klein RS, Berger SA, Yekutiel P. Wound infection during the Yom Kippur war: observations concerning antibiotic prophylaxis and therapy. Ann Surg. 1975;182(1):15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fares Y, El-Zaatari M, Fares J, Bedrosian N, Yared N. Trauma-related infections due to cluster munitions. J Infect Public Health. 2013;6(6):482–6.

    Article  PubMed  Google Scholar 

  46. Nohra G, Maarrawi J, Samaha E, Rizk T, Okais N. Infections after missile head injury. Experience during the Lebanese civilian war. Neuro-Chirurgie. 2002;48(4):339–44.

    CAS  PubMed  Google Scholar 

  47. Zaytoun G, Shikhani A, Salman S. Head and neck war injuries: 10-year experience at the American University of Beirut Medical Center. Laryngoscope. 1986;96(8):899–903.

    Article  CAS  PubMed  Google Scholar 

  48. Lindberg RB, Wetzler TF, Newton A, Howard JM, Davis JH, Strawitz J. The bacterial flora of the blood stream in the Korean battle casualty. Ann Surg. 1955;141(3):366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Manring M, Hawk A, Calhoun JH, Andersen RC. Treatment of war wounds: a historical review. Clin Orthop Relat Res. 2009;467(8):2168–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kovaric J, Matsumoto T, Dobek AS, Hamit HF. Bacterial flora of one hundred and twelve combat wounds. Mil Med. 1968;133(8):622–4.

    CAS  PubMed  Google Scholar 

  51. Tong MJ. Septic complications of war wounds. JAMA. 1972;219(8):1044–7.

    Article  CAS  PubMed  Google Scholar 

  52. Noyes H, Chi NH, Linh LT, Mo DH, Punyashthiti K, Pugh Jr C. Delayed topical antimicrobials as adjuncts to systemic antibiotic therapy of war wounds: bacteriologic studies. Mil Med. 1967;132(6):461.

    CAS  PubMed  Google Scholar 

  53. Heggers J, Barnes ST, Robson MC, Ristroph JD, Omer Jr GE. Microbial flora of orthopaedic war wounds. Mil Med. 1969;134(8):602.

    CAS  PubMed  Google Scholar 

  54. Hospenthal DR, Murray CK, Andersen RC, Blice JP, Calhoun JH, Cancio LC, et al. Guidelines for the prevention of infection after combat-related injuries. J Trauma Acute Care Surg. 2008;64(3):S211–20.

    Article  Google Scholar 

  55. Blyth DM, Yun HC, Tribble DR, Murray CK. Lessons of war: combat-related injury infections during the Vietnam War and Operation Iraqi and Enduring Freedom. J Trauma Acute Care Surg. 2015;79(4):S227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Murray CK, Yun HC, Griffith ME, Hospenthal DR, Tong MJ. Acinetobacter infection: what was the true impact during the Vietnam conflict? Clin Infect Dis. 2006;43(3):383–4.

    Article  PubMed  Google Scholar 

  57. Matsumoto T, Wyte SR, Moseley RV, Hawley RJ, Lackey GR. Combat surgery in communication zone. I. War wound and bacteriology (preliminary report). Mil Med. 1969;134(9):655.

    CAS  PubMed  Google Scholar 

  58. Hrabák J, Študentová V, Adámková V, Šemberová L, Kabelíková P, Hedlová D, et al. Report on a transborder spread of carbapenemase-producing bacteria by a patient injured during Euromaidan, Ukraine. New Microbes New Infect. 2015;8:28–30.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kader AA, Kumar A, Kamath KA. Fecal carriage of extended-spectrum β-lactamase–producing Escherichia coli and Klebsiella pneumoniae in patients and asymptomatic healthy individuals. Infect Control. 2007;28(09):1114–6.

    Google Scholar 

  60. Vento TJ, Cole DW, Mende K, Calvano TP, Rini EA, Tully CC, et al. Multidrug-resistant gram-negative bacteria colonization of healthy US military personnel in the US and Afghanistan. BMC Infect Dis. 2013;13(1):68–79.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Turton JF, Kaufmann ME, Gill MJ, Pike R, Scott PT, Fishbain J, et al. Comparison of Acinetobacter baumannii isolates from the United Kingdom and the United States that were associated with repatriated casualties of the Iraq conflict. J Clin Microbiol. 2006;44(7):2630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Velmahos GC, Toutouzas KG, Sarkisyan G, Chan LS, Jindal A, Karaiskakis M, et al. Severe trauma is not an excuse for prolonged antibiotic prophylaxis. Arch Surg. 2002;137(5):537–42.

    Article  PubMed  Google Scholar 

  63. Velmahos GC, Jindal A, Chan L, Kritikos E, Vassiliu P, Berne TV, et al. Prophylactic antibiotics after severe trauma: more is not better. Int Surg. 2000;86(3):176–83.

    Google Scholar 

  64. Hospenthal DR, Murray CK, Andersen RC, Bell RB, Calhoun JH, Cancio LC, et al. Guidelines for the prevention of infections associated with combat-related injuries: 2011 update: endorsed by the Infectious Diseases Society of America and the Surgical Infection Society. J Trauma Acute Care Surg. 2011;71(2):S210–34.

    Article  CAS  Google Scholar 

  65. Petersen K, Waterman P. Prophylaxis and treatment of infections associated with penetrating traumatic injury. Expert Rev Anti-Infect Ther. 2011;9(1):81–96.

    Article  PubMed  Google Scholar 

  66. Mérens A, Rapp C, Delaune D, Danis J, Berger F, Michel R. Prevention of combat-related infections: antimicrobial therapy in battlefield and barrier measures in French military medical treatment facilities. Travel Med Infect Dis. 2014;12(4):318–29.

    Article  PubMed  Google Scholar 

  67. Griffith ME, Ceremuga JM, Ellis MW, Guymon CH, Hospenthal DR, Murray CK. Acinetobacter skin colonization of US Army soldiers. Infect Control. 2006;27(07):659–61.

    Google Scholar 

  68. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Scott P, Deye G, Srinivasan A, Murray C, Moran K, Hulten E, et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin Infect Dis. 2007;44(12):1577–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Bizri M.D., M.Sc., D.L.S.H.T.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bizri, A.R., Sahli, Z.T. (2017). Infections in Combat-Related Wounds. In: Abu-Sittah, G., Hoballah, J., Bakhach, J. (eds) Reconstructing the War Injured Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-56887-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56887-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56885-0

  • Online ISBN: 978-3-319-56887-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics