Skip to main content

Secondary Causes: Work-Up and Its Specificities in CKD: Influence of Volume Overload, Excess Sodium Intake and Retention in CKD

  • Chapter
  • First Online:
Resistant Hypertension in Chronic Kidney Disease

Abstract

Worldwide, it is estimated that more than 1 billion adults have hypertension; its prevalence is projected to climb to 1.5 billion by the year 2025 (World Health Organization. A global brief on hypertension. WHO/DCO/WHD/2013.2. April 3, 2013 (http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf)); it is associated with premature death, stroke, and heart disease. The pathogenesis of hypertension is complex, involving increased systemic vascular resistance, arterial stiffening, cardiac output, excess salt intake, fluid retention, or a combination of all of these factors. The kidney plays an essential role in blood pressure (BP) pathogenesis, by appropriate renal adjustments of sodium balance and blood volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. A global brief on hypertension. WHO/DCO/WHD/2013.2. April 3, 2013 (http://apps.who.int/iris/bitstream/10665/79059/1/WHO_DCO_WHD_2013.2_eng.pdf).

  2. Guyton AC, Coleman TG, Cowley AW, Scheel KW, Manning RD, Norman RA. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–94.

    Article  CAS  PubMed  Google Scholar 

  3. Lifton R, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    Article  CAS  PubMed  Google Scholar 

  4. Mu S, Shimosawa T, Ogura S, et al. Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17:573–80. Nishimoto M, Fujita T. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways. Am J Physiol Renal Physiol. 2015;308:F377–87.

    Google Scholar 

  5. Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol. 2000;278:F585–95.

    CAS  PubMed  Google Scholar 

  6. Titze J, Maillet A, Lang R. Long-term sodium balance in humans in a terrestrial space station simulation study. Am J Kidney Dis. 2002;40:508–16. Rakova N, Jüttner K, Dahlmann A, Schröder A. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab. 2013;17:125–31.

    Google Scholar 

  7. Machnik A, Dahlmann A, Kopp C, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55:755–61.

    Article  CAS  PubMed  Google Scholar 

  8. Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52.

    Article  CAS  PubMed  Google Scholar 

  9. Oberleithner H, Peters W, Kusche-Vihrog K, et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 2011;462:519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi HY, Park HC, Ha SK. Salt sensitivity and hypertension: a paradigm shift from kidney malfunction to vascular endothelial dysfunction. Electrolyte Blood Press. 2015;13(1):7–16.

    Google Scholar 

  11. Ball OT, Meneely GR. Observations on dietary sodium chloride. J Am Diet Assoc. 1957;33:366–70.

    CAS  PubMed  Google Scholar 

  12. Dahl LK, Heine M, Tassinari L. Effects of chronic salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med. 1962;115:1173–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Denton D, Weisinger R, Mundy NI, et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat Med. 1995;1:1009–16.

    Article  CAS  PubMed  Google Scholar 

  14. MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1:351–5.

    Article  CAS  PubMed  Google Scholar 

  15. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 h urinary sodium and potassium excretion. BMJ. 1988;297:319–28.

    Article  Google Scholar 

  16. The Trials of Hypertension Prevention Collaborative Research Group. The effects of nonpharmacologic interventions on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. JAMA. 1992;267:1213–20.

    Article  Google Scholar 

  17. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the trials of hypertension prevention, phase II. Arch Intern Med. 1997;157:657–66.

    Article  Google Scholar 

  18. Whelton PK, Appel LJ, Espeland MA, et al. for the TONE Collaborative Research Group. Sodium reduction and weight loss in the treatment of hypertension in older persons. A randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA. 1998;279:839–46.

    Google Scholar 

  19. Sacks FM, Svetkey LP, Vollmer WM, et al; DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344:3–10.

    Google Scholar 

  20. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al; PURE Investigators. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371(7):601–1.

    Google Scholar 

  21. Oparil S. Low sodium intake – cardiovascular health benefit or risk? N Engl J Med. 2014;371(7):677–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mozaffarian D, Fahimi S, Singh GM, et al. for the Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NUTRICODE). Global Sodium Consumption and Death from Cardiovascular Causes. N Engl J Med. 2014; 371:624–34.

    Google Scholar 

  23. Hwang JH, Chin HJ, Kim S, Kim DK, Kim S, Park JH, Shin SJ, Lee SH, Choi BS, Lim CS. Effects of intensive low-salt diet education on albuminuria among nondiabetic patients with hypertension treated with olmesartan: a single-blinded randomized, controlled trial. Clin J Am Soc Nephrol. 2014;9(12):2059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Elia L, Rossi G, Schiano di Cola M, Savino I, Galletti F, Strazzullo P. Meta-analysis of the effect of dietary sodium restriction with or without concomitant renin-angiotensin-aldosterone system-inhibiting treatment on albuminuria. Clin J Am Soc Nephrol. 2015;10(9):1542–52.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Middleton JP, Lehrich RW. Prescriptions for dietary sodium in patients with chronic kidney disease: how will this shake out? Kidney Int. 2014;86(3):457–9.

    Article  CAS  PubMed  Google Scholar 

  26. McMahon EJ, Bauer JD, Hawley CM, et al. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol. 2013;24:2096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McMahon EJ, Campbell KL, Altered dietary salt for people with CKD. Nephrology. 2015;20:758–759.

    Google Scholar 

  28. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for high blood pressure research. Hypertension. 2008;51(6):1403–19.

    Article  CAS  PubMed  Google Scholar 

  29. Dustan HP. Causes of inadequate response to antihypertensive drugs: volume factors. Hypertension. 1983;5:III-26–30.

    Article  CAS  Google Scholar 

  30. Graves JW, Bloomfield RL, Buckalew VM. Plasma volume in resistant hypertension: guide to pathophysiology and therapy. Am J Med Sci. 1989;298:361–5.

    Article  CAS  PubMed  Google Scholar 

  31. Taler SJ. Individualizing antihypertensive combination therapies: clinical and hemodynamic considerations. Curr Hypertens Rep. 2014 Jul;16(7):451.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taler SJ, Textor SC, Augustine JE. Resistant hypertension: comparing hemodynamic management to specialist care. Hypertension. 2002;39(5):982–8.

    Article  CAS  PubMed  Google Scholar 

  33. Smith R, Levy P, Ferrario C. for the Consideration of Noninvasive Hemodynamic Monitoring to Target Reduction of Blood Pressure Levels Study Group. Value of noninvasive hemodynamics to achieve blood pressure control in hypertensive subjects. Hypertension. 2006;47:771–7.

    Google Scholar 

  34. Krzesiński P, Gielerak G, Kowal J. A “patient-tailored” treatment of hypertension with use of impedance cardiography: a randomized, prospective and controlled trial. Med Sci Monit. 2013;19:242–50. The most recent randomized trial using hemodynamic measurements to guide hypertension treatment in patients with mild to moderate hypertension.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Krzesiński P, Gielerak G, Kowal J. A “patient-tailored” treatment of hypertension with use of impedance cardiography: a randomized, prospective and controlled trial. Med Sci Monit. 2013;19:242–50.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hung SC, Lai YS, Kuo KL, Tarng DC. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. J Am Heart Assoc. 2015;4(5) doi:10.1161/JAHA.115.001918.

  37. Hung SC, Kuo KL, Peng CH, Wu CH, Lien YC, Wang YC, Tarng DC. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 2014;85(3):703–9.

    Article  CAS  PubMed  Google Scholar 

  38. Verdalles U, de Vinuesa SG, Goicoechea M, et al. Utility of bioimpedance spectroscopy (BIS) in the management of refractory hypertension in patients with chronic kidney disease (CKD). Nephrol Dial Transplant. 2012;27(Suppl 4):iv31–5.

    Article  PubMed  Google Scholar 

  39. Wabel P, Moissl U, Chamney P, Jirka T, Machek P, Ponce P, Taborsky P, Tetta C, Velasco N, Vlasak J, Zaluska W, Wizemann V. Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrol Dial Transplant. 2008;23(9):2965–71.

    Article  PubMed  Google Scholar 

  40. Agarwal R, Alborzi P, Satyan S, Light RP. Dry-weight reduction in hypertensive hemodialysis patients (DRIP): a randomized, controlled trial. Hypertension. 2009;53:500–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moissl U, Arias-Guillen M, Wabel P, Fontsere N, Carrera M, Campistol JM, Maduell F. Bioimpedance-guided fluid management in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(9):1575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hur E, Usta M, Toz H, Asci G, Wabel P, Kahvecioglu S, Kayikcioglu M, Demirci MS, Ozkahya M, Duman S, Ok E. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am J Kidney Dis. 2013;61(6):957–65.

    Article  PubMed  Google Scholar 

  43. Onofriescu M, Hogas S, Voroneanu L, Apetrii M, Nistor I, Kanbay M, Covic AC. Bioimpedance-guided fluid management in maintenance hemodialysis: a pilot randomized controlled trial. Am J Kidney Dis. 2014;64(1):111–8.

    Article  PubMed  Google Scholar 

  44. Ponce P, Pham J, Gligoric-Fuerer O, Kreuzberg O. Fluid management in haemodialysis: conventional versus body composition monitoring (BCM) supported management of overhydrated patients. Port J Nephrol Hypert. 2014;28(3):239–48.

    Google Scholar 

  45. Van Biesen W, Williams JD, Covic AC, Fan S, Claes K, Lichodziejewska-Niemierko M, Verger C, Steiger J, Schoder V, Wabel P, Gauly A, Himmele R; EuroBCM Study Group. Fluid status in peritoneal dialysis patients: the European body composition monitoring (EuroBCM) study cohort. PLoS One. 2011;6(2):e17148.

    Google Scholar 

  46. Chen YC, Lin CJ, Wu CJ, Chen HH, Yeh JC. Comparison of extracellular volume and blood pressure in hemodialysis and peritoneal dialysis patients. Nephron Clin Pract. 2009;113(2):c112–6.

    Google Scholar 

  47. Yılmaz Z, Yıldırım Y, Aydın FY, Aydın E, Kadiroğlu AK, Yılmaz ME, Acet H. Evaluation of fluid status related parameters in hemodialysis and peritoneal dialysis patients: clinical usefulness of bioimpedance analysis. Medicina (Kaunas). 2014;50(5):269–74.

    Article  Google Scholar 

  48. Günal AI, Duman S, Ozkahya M, Töz H, Asçi G, Akçiçek F, Basçi A. Strict volume control normalizes hypertension in peritoneal dialysis patients. Am J Kidney Dis. 2001;37(3):588–93.

    Article  PubMed  Google Scholar 

  49. Luo YJ, Lu XH, Woods F, Wang T. Volume control in peritoneal dialysis patients guided by bioimpedance spectroscopy assessment. Blood Purif. 2011;31(4):296–302.

    Article  PubMed  Google Scholar 

  50. Ziskin MC, Thickman DI, Goldenberg NJ, et al. The comet tail artifact. J Ultrasound Med. 1982;1:1–7.

    Article  CAS  PubMed  Google Scholar 

  51. Soldati G, Copetti R, Sher S. Sonographic interstitial syndrome: the sound of lung water. J Ultrasound Med. 2009;28:163–74.

    Article  PubMed  Google Scholar 

  52. Mallamaci F, Benedetto FA, Tripepi R, Rastelli S, Castellino P, Tripepi G, Picano E, Zoccali C. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc Imaging. 2010;3(6):586–94.

    Article  PubMed  Google Scholar 

  53. Panuccio V, Enia G, Tripepi R, Torino C, Garozzo M, Battaglia GG, Marcantoni C, Infantone L, Giordano G, De Giorgi ML, Lupia M, Bruzzese V, Zoccali C. Chest ultrasound and hidden lung congestion in peritoneal dialysis patients. Nephrol Dial Transplant. 2012;27(9):3601–5.

    Article  PubMed  Google Scholar 

  54. Zoccali C, Torino C, Tripepi R, Tripepi G, D’Arrigo G, Postorino M, Gargani L, Sicari R, Picano E, Mallamaci F; Lung US in CKD Working Group. Pulmonary congestion predicts cardiac events and mortality in ESRD. J Am Soc Nephrol. 2013;24(4):639–46.

    Google Scholar 

  55. Weitzel WF, Hamilton J, Wang X, Bull JL, Vollmer A, Bowman A, Rubin J, Kruger GH, Gao J, Heung M, Rao P. Quantitative lung ultrasound comet measurement: method and initial clinical results. Blood Purif. 2015;39(1–3):37–44.

    Article  PubMed  Google Scholar 

  56. Siriopol D, Hogas S, Voroneanu L, Onofriescu M, Apetrii M, Oleniuc M, Moscalu M, Sascau R, Covic A. Predicting mortality in haemodialysis patients: a comparison between lung ultrasonography, bioimpedance data and echocardiography parameters. Nephrol Dial Transplant. 2013;28(11):2851–9.

    Article  PubMed  Google Scholar 

  57. Basso F, Milan Manani S, Cruz DN, Teixeira C, Brendolan A, Nalesso F, Zanella M, Ronco C. Comparison and reproducibility of techniques for fluid status assessment in chronic hemodialysis patients. Cardiorenal Med. 2013;3(2):104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paudel K, Kausik T, Visser A, Ramballi C, Fan SL. Comparing lung ultrasound with bioimpedance spectroscopy for evaluating hydration in peritoneal dialysis patients. Nephrology (Carlton). 2015;20(1):1–5.

    Article  CAS  Google Scholar 

  59. Siriopol D, Voroneanu L, Hogas S, Apetrii M, Gramaticu A, Dumea R, Burlacu A, Sascau R, Kanbay M, Covic A. Bioimpedance analysis versus lung ultrasonography for optimal risk prediction in hemodialysis patients. Int J Cardiovasc Imaging. 2016;32(2):263–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Voroneanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voroneanu, L., Siriopol, D., Covic, A. (2017). Secondary Causes: Work-Up and Its Specificities in CKD: Influence of Volume Overload, Excess Sodium Intake and Retention in CKD. In: Covic, A., Kanbay, M., Lerma, E. (eds) Resistant Hypertension in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-56827-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56827-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56825-6

  • Online ISBN: 978-3-319-56827-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics