Skip to main content

Atypical Immune Functions of CD95/CD95L

  • Chapter
  • First Online:
TRAIL, Fas Ligand, TNF and TLR3 in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 12))

  • 645 Accesses

Abstract

The receptor CD95 (also named Fas or APO-1) is a member of the tumor necrosis factor receptor (TNF-R) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Mutations of this receptor or its ligand lead to autoimmune disorders such as systemic lupus erythematosus (SLE) and to cancers; hence, CD95 and CD95L were initially classified as having a tumor suppressor role. However, more recent data indicate that, in different pathophysiological contexts, CD95 can evoke nonapoptotic signals, promote inflammation, and contribute to carcinogenesis. We show that, because CD95L can exist in two different forms, a transmembrane and a soluble metalloprotease-cleaved ligand (cl-CD95L), CD95 can implement apoptotic or nonapoptotic signalling pathways, respectively. In this chapter, we discuss the roles of CD95 on the modulation of immune functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, Mackay CR (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173(1):68–78

    Article  CAS  PubMed  Google Scholar 

  2. Basu R, O’Quinn DB, Silberger DJ, Schoeb TR, Fouser L, Ouyang W, Hatton RD, Weaver CT (2012) Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37(6):1061–1075. doi:10.1016/j.immuni.2012.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr HA, Wirtz S, Vieth M, Waisman A, Rosenbauer F, McKenzie AN, Weigmann B, Neurath MF (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15(7):676–686. doi:10.1038/ni.2920

    Article  CAS  PubMed  Google Scholar 

  4. Chu JL, Ramos P, Rosendorff A, Nikolic-Zugic J, Lacy E, Matsuzawa A, Elkon KB (1995) Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome. J Exp Med 181(1):393–398

    Article  CAS  PubMed  Google Scholar 

  5. Nagata S, Golstein P (1995) The Fas death factor. Science 267(5203):1449–1456

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Mercep M, Ware CF, Ashwell JD (1995) Fas and activation-induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids. J Exp Med 181(5):1673–1682

    Article  CAS  PubMed  Google Scholar 

  7. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192. doi:10.1016/j.immuni.2009.01.001. S1074-7613(09)00069-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poissonnier A, Sanseau D, Le Gallo M, Malleter M, Levoin N, Viel R, Morere L, Penna A, Blanco P, Dupuy A, Poizeau F, Fautrel A, Seneschal J, Jouan F, Ritz J, Forcade E, Rioux N, Contin-Bordes C, Ducret T, Vacher AM, Barrow PA, Flynn RJ, Vacher P, Legembre P (2016) CD95-mediated calcium signaling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice. Immunity 45(1):209–223. doi:10.1016/j.immuni.2016.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87(2):171

    Article  CAS  PubMed  Google Scholar 

  10. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270(14):7795–7798

    Article  CAS  PubMed  Google Scholar 

  11. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81(4):505–512. 0092-8674(95)90071-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81(4):495–504. 0092-8674(95)90070-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  15. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  16. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243. 0092-8674(91)90614-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61(2):351–359

    Article  CAS  PubMed  Google Scholar 

  18. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113

    Article  CAS  PubMed  Google Scholar 

  19. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397. doi:10.1093/emboj/16.17.5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pan G, Bauer JH, Haridas V, Wang S, Liu D, Yu G, Vincenz C, Aggarwal BB, Ni J, Dixit VM (1998) Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 431(3):351–356

    Article  CAS  PubMed  Google Scholar 

  21. Fouque A, Debure L, Legembre P (2014) The CD95/CD95L signaling pathway: a role in carcinogenesis. Biochim Biophys Acta. doi:10.1016/j.bbcan.2014.04.007

    PubMed  Google Scholar 

  22. Hoogwater FJ, Steller EJ, Westendorp BF, Borel Rinkes IH, Kranenburg O (2012) CD95 signaling in colorectal cancer. Biochim Biophys Acta 1826(1):189–198. doi:10.1016/j.bbcan.2012.03.007

    CAS  PubMed  Google Scholar 

  23. Martin-Villalba A, Llorens-Bobadilla E, Wollny D (2013) CD95 in cancer: tool or target? Trends Mol Med 19(6):329–335. doi:10.1016/j.molmed.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P (2015) The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22(5):885–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178(6):2231–2235

    Article  CAS  PubMed  Google Scholar 

  26. Schulze-Osthoff K, Krammer PH, Droge W (1994) Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 13(19):4587–4596

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisele G, Roth P, Hasenbach K, Aulwurm S, Wolpert F, Tabatabai G, Wick W, Weller M (2011) APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo. Neuro-Oncology 13(2):155–164. doi:10.1093/neuonc/noq176

    Article  CAS  PubMed  Google Scholar 

  28. Verbrugge I, Wissink EH, Rooswinkel RW, Jongsma J, Beltraminelli N, Dupuis M, Borst J, Verheij M (2009) Combining radiotherapy with APO010 in cancer treatment. Clin Cancer Res 15(6):2031–2038. doi:10.1158/1078-0432.CCR-08-2125

    Article  CAS  PubMed  Google Scholar 

  29. Wick W, Fricke H, Junge K, Kobyakov G, Martens T, Heese O, Wiestler B, Schliesser MG, von Deimling A, Pichler J, Vetlova E, Harting I, Debus J, Hartmann C, Kunz C, Platten M, Bendszus M, Combs SE (2014) A phase II, randomized, study of weekly APG101+reirradiation versus reirradiation in progressive glioblastoma. Clin Cancer Res 20(24):6304–6313. doi:10.1158/1078-0432.CCR-14-0951-T

    Article  CAS  PubMed  Google Scholar 

  30. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245(4915):301–305

    Article  CAS  PubMed  Google Scholar 

  31. Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75(6):1169–1178

    Article  CAS  PubMed  Google Scholar 

  32. Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Leveque J, Jezequel P, Campion L, Campone M, Ducret T, MacGrogan G, Debure L, Collette Y, Vacher P, Legembre P (2013) CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer. Cancer Res 73(22):6711–6721. doi:10.1158/0008-5472.CAN-13-1794

  33. Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau JF, Hofman P, Vacher P, Legembre P (2011) The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 9(6):e1001090. doi:10.1371/journal.pbio.1001090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187(8):1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soderstrom TS, Nyberg SD, Eriksson JE (2005) CD95 capping is ROCK-dependent and dispensable for apoptosis. J Cell Sci 118(Pt 10):2211–2223

    Article  PubMed  CAS  Google Scholar 

  36. Legembre P, Barnhart BC, Peter ME (2004) The relevance of NF-kappaB for CD95 signaling in tumor cells. Cell Cycle 3(10):1235–1239

    Article  CAS  PubMed  Google Scholar 

  37. Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, Lavelle EC, Leverkus M, Martin SJ (2013) Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol Cell 49(6):1034–1048. doi:10.1016/j.molcel.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  38. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76(6):959–962

    Article  CAS  PubMed  Google Scholar 

  39. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    Article  CAS  PubMed  Google Scholar 

  40. Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26

    Article  CAS  PubMed  Google Scholar 

  41. Edmond V, Ghali B, Penna A, Taupin JL, Daburon S, Moreau JF, Legembre P (2012) Precise mapping of the CD95 pre-ligand assembly domain. PLoS One 7(9):e46236. doi:10.1371/journal.pone.0046236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Papoff G, Hausler P, Eramo A, Pagano MG, Di Leve G, Signore A, Ruberti G (1999) Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 274(53):38241–38250

    Article  CAS  PubMed  Google Scholar 

  43. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288(5475):2354–2357

    Article  CAS  PubMed  Google Scholar 

  44. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268(15):10932–10937

    CAS  PubMed  Google Scholar 

  45. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74(5):845–853. 0092-8674(93)90464-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB, Goeddel DV (1984) Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312(5996):724–729

    Article  CAS  PubMed  Google Scholar 

  47. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385(6618):729–733. doi:10.1038/385729a0

    Article  CAS  PubMed  Google Scholar 

  48. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Becherer JD et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385(6618):733–736. doi:10.1038/385733a0

    Article  CAS  PubMed  Google Scholar 

  49. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83(5):793–802

    Article  CAS  PubMed  Google Scholar 

  50. Cabal-Hierro L, Lazo PS (2012) Signal transduction by tumor necrosis factor receptors. Cell Signal 24(6):1297–1305. doi:10.1016/j.cellsig.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76(6):969–976. 0092-8674(94)90375-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Montel AH, Bochan MR, Hobbs JA, Lynch DH, Brahmi Z (1995) Fas involvement in cytotoxicity mediated by human NK cells. Cell Immunol 166(2):236–246

    Article  CAS  PubMed  Google Scholar 

  53. Saas P, Walker PR, Hahne M, Quiquerez AL, Schnuriger V, Perrin G, French L, Van Meir EG, de Tribolet N, Tschopp J, Dietrich PY (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 99(6):1173–1178. doi:10.1172/JCI119273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270(5239):1189–1192

    Article  CAS  PubMed  Google Scholar 

  55. Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99(3):396–402. doi:10.1172/JCI119173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377(6550):630–632

    Article  CAS  PubMed  Google Scholar 

  57. Chen JJ, Sun Y, Nabel GJ (1998) Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282(5394):1714–1717

    Article  CAS  PubMed  Google Scholar 

  58. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274(5291):1363–1366

    Article  CAS  PubMed  Google Scholar 

  59. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184(3):1075–1082

    Article  PubMed  Google Scholar 

  60. Allison J, Georgiou HM, Strasser A, Vaux DL (1997) Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci U S A 94(8):3943–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3(7):738–743

    Article  CAS  PubMed  Google Scholar 

  62. Restifo NP (2001) Countering the ‘counterattack’ hypothesis. Nat Med 7(3):259. doi:10.1038/85357. 85357 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park SM, Schickel R, Peter ME (2005) Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 17(6):610–616. doi:10.1016/j.ceb.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  64. Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA Jr, Matis LA (1997) The role of Fas in autoimmune diabetes. Cell 89(1):17–24

    Article  CAS  PubMed  Google Scholar 

  65. Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, Laudenklos S, Konecki K, Klussmann S, Corsini NS, Kleber S, Drost N, Neumann A, Levi-Strauss M, Brors B, Gretz N, Edler L, Fischer C, Hill O, Thiemann M, Biglari B, Karray S, Martin-Villalba A (2010) CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 32(2):240–252. doi:10.1016/j.immuni.2010.01.011. S1074-7613(10)00041-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  66. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23(15):3175–3185. doi:10.1038/sj.emboj.7600325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O, Thiemann M, Mueller W, Sykora J, Kuhn A, Schreglmann N, Letellier E, Zuliani C, Klussmann S, Teodorczyk M, Grone HJ, Ganten TM, Sultmann H, Tuttenberg J, von Deimling A, Regnier-Vigouroux A, Herold-Mende C, Martin-Villalba A (2008) Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13(3):235–248. doi:10.1016/j.ccr.2008.02.003. S1535-6108(08)00043-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T (2001) Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 28(1):22–28

    CAS  PubMed  Google Scholar 

  69. Vargo-Gogola T, Crawford HC, Fingleton B, Matrisian LM (2002) Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Arch Biochem Biophys 408(2):155–161

    Article  CAS  PubMed  Google Scholar 

  70. Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, Rafii S, Lorenzl S, Beal MF (2007) Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205(1):74–81. doi:10.1016/j.expneurol.2007.01.036. S0014-4886(07)00039-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  71. Kirkin V, Cahuzac N, Guardiola-Serrano F, Huault S, Luckerath K, Friedmann E, Novac N, Wels WS, Martoglio B, Hueber AO, Zornig M (2007) The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differ 14(9):1678–1687. doi:10.1038/sj.cdd.4402175. 4402175 [pii]

    Article  CAS  PubMed  Google Scholar 

  72. Schulte M, Reiss K, Lettau M, Maretzky T, Ludwig A, Hartmann D, de Strooper B, Janssen O, Saftig P (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ 14(5):1040–1049. doi:10.1038/sj.cdd.4402101. 4402101 [pii]

    CAS  PubMed  Google Scholar 

  73. Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, Tinel A, Deperthes D, Calderara S, Schulthess T, Engel J, Schneider P, Tschopp J (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23(4):1428–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S (1997) Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 186(12):2045–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461(7264):659–663. doi:10.1038/nature08402. nature08402 [pii]

    Article  CAS  Google Scholar 

  76. Cursi S, Rufini A, Stagni V, Condo I, Matafora V, Bachi A, Bonifazi AP, Coppola L, Superti-Furga G, Testi R, Barila D (2006) Src kinase phosphorylates caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J 25(9):1895–1905. doi:10.1038/sj.emboj.7601085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Senft J, Helfer B, Frisch SM (2007) Caspase-8 interacts with the p85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility. Cancer Res 67(24):11505–11509. doi:10.1158/0008-5472.CAN-07-5755

    Article  CAS  PubMed  Google Scholar 

  78. Steller EJ, Borel Rinkes IH, Kranenburg O (2011) How CD95 stimulates invasion. Cell Cycle 10(22):3857–3862. doi:10.4161/cc.10.22.18290

    Article  CAS  PubMed  Google Scholar 

  79. Steller EJ, Ritsma L, Raats DA, Hoogwater FJ, Emmink BL, Govaert KM, Laoukili J, Rinkes IH, van Rheenen J, Kranenburg O (2011) The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion. EMBO Rep 12(9):931–937. doi:10.1038/embor.2011.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Herrero R, Kajikawa O, Matute-Bello G, Wang Y, Hagimoto N, Mongovin S, Wong V, Park DR, Brot N, Heinecke JW, Rosen H, Goodman RB, Fu X, Martin TR (2011) The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. J Clin Invest 121(3):1174–1190. doi:10.1172/JCI43004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alonso R, Mazzeo C, Rodriguez MC, Marsh M, Fraile-Ramos A, Calvo V, Avila-Flores A, Merida I, Izquierdo M (2011) Diacylglycerol kinase alpha regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ 18(7):1161–1173. doi:10.1038/cdd.2010.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bianco NR, Kim SH, Morelli AE, Robbins PD (2007) Modulation of the immune response using dendritic cell-derived exosomes. Methods Mol Biol 380:443–455

    Article  CAS  PubMed  Google Scholar 

  83. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, Min WP (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 35(2):169–173. doi:10.1016/j.bcmd.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  84. Bui JD, Schreiber RD (2007) Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 19(2):203–208. doi:10.1016/j.coi.2007.02.001. S0952-7915(07)00009-X [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Peter ME, Legembre P, Barnhart BC (2005) Does CD95 have tumor promoting activities? Biochim Biophys Acta 1755(1):25–36. doi:10.1016/j.bbcan.2005.01.001

    CAS  PubMed  Google Scholar 

  86. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81(6):935–946

    Article  CAS  PubMed  Google Scholar 

  87. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268(5215):1347–1349

    Article  CAS  PubMed  Google Scholar 

  88. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 335(22):1643–1649

    Article  CAS  PubMed  Google Scholar 

  89. Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A, Peters AM, Sneller MC, Hallahan CW, Wang J, Fischer RE, Jackson CM, Lin AY, Baumler C, Siegert E, Marx A, Vaishnaw AK, Grodzicky T, Fleisher TA, Lenardo MJ (2001) The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98(1):194–200

    Article  CAS  PubMed  Google Scholar 

  90. Legembre P, Barnhart BC, Zheng L, Vijayan S, Straus SE, Puck J, Dale JK, Lenardo M, Peter ME (2004) Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds. EMBO Rep 5(11):1084–1089. doi:10.1038/sj.embor.7400280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, Rosell R, Moonsamy P, Dahlman K, Miller VA, Costa C, Hannon G, Sawyers CL (2011) FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471(7339):523–526. doi:10.1038/nature09870. nature09870 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465(7297):492–496. doi:10.1038/nature09075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bellone G, Smirne C, Carbone A, Mareschi K, Dughera L, Farina EC, Alabiso O, Valente G, Emanuelli G, Rodeck U (2000) Production and pro-apoptotic activity of soluble CD95 ligand in pancreatic carcinoma. Clin Cancer Res 6(6):2448–2455

    CAS  PubMed  Google Scholar 

  94. Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Leveque J, Jezequel P, Campion L, Campone M, Ducret T, Macgrogan G, Debure L, Collette Y, Vacher P, Legembre P (2013) CD95L cell surface cleavage triggers a pro-metastatic signaling pathway in triple negative breast cancer. Cancer Res. doi:10.1158/0008-5472.CAN-13-1794

    PubMed  Google Scholar 

  95. Tanaka M, Suda T, Haze K, Nakamura N, Sato K, Kimura F, Motoyoshi K, Mizuki M, Tagawa S, Ohga S, Hatake K, Drummond AH, Nagata S (1996) Fas ligand in human serum. Nat Med 2(3):317–322

    Article  CAS  PubMed  Google Scholar 

  96. Hashimoto H, Tanaka M, Suda T, Tomita T, Hayashida K, Takeuchi E, Kaneko M, Takano H, Nagata S, Ochi T (1998) Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 41(4):657–662. doi:10.1002/1529-0131(199804)41:4<657::AID-ART12>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  97. Das H, Imoto S, Murayama T, Kajimoto K, Sugimoto T, Isobe T, Nakagawa T, Nishimura R, Koizumi T (1999) Levels of soluble FasL and FasL gene expression during the development of graft-versus-host disease in DLT-treated patients. Br J Haematol 104(4):795–800

    Article  CAS  PubMed  Google Scholar 

  98. Kanda Y, Tanaka Y, Shirakawa K, Yatomi T, Nakamura N, Kami M, Saito T, Izutsu K, Asai T, Yuji K, Ogawa S, Honda H, Mitani K, Chiba S, Yazaki Y, Hirai H (1998) Increased soluble Fas-ligand in sera of bone marrow transplant recipients with acute graft-versus-host disease. Bone Marrow Transplant 22(8):751–754. doi:10.1038/sj.bmt.1701427

    Article  CAS  PubMed  Google Scholar 

  99. Tomokuni A, Otsuki T, Isozaki Y, Kita S, Ueki H, Kusaka M, Kishimoto T, Ueki A (1999) Serum levels of soluble Fas ligand in patients with silicosis. Clin Exp Immunol 118(3):441–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288(5475):2351–2354

    Article  CAS  PubMed  Google Scholar 

  101. Lang I, Fick A, Schafer V, Giner T, Siegmund D, Wajant H (2012) Signaling active CD95 receptor molecules trigger co-translocation of inactive CD95 molecules into lipid rafts. J Biol Chem 287(28):24026–24042. doi:10.1074/jbc.M111.328211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384(6610):638–641. doi:10.1038/384638a0

    Article  CAS  PubMed  Google Scholar 

  103. Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457(7232):1019–1022. doi:10.1038/nature07606. nature07606 [pii]

    Article  CAS  PubMed  Google Scholar 

  104. Esposito D, Sankar A, Morgner N, Robinson CV, Rittinger K, Driscoll PC (2010) Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus. Structure 18(10):1378–1390. doi:10.1016/j.str.2010.08.006. S0969-2126(10)00301-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  105. Wang L, Yang JK, Kabaleeswaran V, Rice AJ, Cruz AC, Park AY, Yin Q, Damko E, Jang SB, Raunser S, Robinson CV, Siegel RM, Walz T, Wu H (2010) The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17(11):1324–1329. doi:10.1038/nsmb.1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Monet M, Poet M, Tauzin S, Fouque A, Cophignon A, Lagadic-Gossmann D, Vacher P, Legembre P, Counillon L (2016) The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility. Sci Rep 6:28008. doi:10.1038/srep28008

    Article  PubMed  PubMed Central  Google Scholar 

  107. Muppidi JR, Lobito AA, Ramaswamy M, Yang JK, Wang L, Wu H, Siegel RM (2006) Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death Differ 13(10):1641–1650. doi:10.1038/sj.cdd.4401855

    Article  CAS  PubMed  Google Scholar 

  108. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195

    Article  CAS  PubMed  Google Scholar 

  109. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–521

    Article  CAS  PubMed  Google Scholar 

  110. Condorelli G, Vigliotta G, Cafieri A, Trencia A, Andalo P, Oriente F, Miele C, Caruso M, Formisano P, Beguinot F (1999) PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 18(31):4409–4415. doi:10.1038/sj.onc.1202831

    Article  CAS  PubMed  Google Scholar 

  111. Kimura M, Matsuzawa A (1994) Autoimmunity in mice bearing lprcg: a novel mutant gene. Int Rev Immunol 11(3):193–210

    Article  CAS  PubMed  Google Scholar 

  112. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356(6367):314–317. doi:10.1038/356314a0

    Article  CAS  PubMed  Google Scholar 

  113. Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A 90(5):1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chu JL, Drappa J, Parnassa A, Elkon KB (1993) The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J Exp Med 178(2):723–730

    Article  CAS  PubMed  Google Scholar 

  115. Matsuzawa A, Moriyama T, Kaneko T, Tanaka M, Kimura M, Ikeda H, Katagiri T (1990) A new allele of the lpr locus, lprcg, that complements the gld gene in induction of lymphadenopathy in the mouse. J Exp Med 171(2):519–531

    Article  CAS  PubMed  Google Scholar 

  116. Heinzelmann F, Jendrossek V, Lauber K, Nowak K, Eldh T, Boras R, Handrick R, Henkel M, Martin C, Uhlig S, Kohler D, Eltzschig HK, Wehrmann M, Budach W, Belka C (2006) Irradiation-induced pneumonitis mediated by the CD95/CD95-ligand system. J Natl Cancer Inst 98(17):1248–1251. doi:10.1093/jnci/djj335

    Article  CAS  PubMed  Google Scholar 

  117. Martin DA, Zheng L, Siegel RM, Huang B, Fisher GH, Wang J, Jackson CE, Puck JM, Dale J, Straus SE, Peter ME, Krammer PH, Fesik S, Lenardo MJ (1999) Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc Natl Acad Sci U S A 96(8):4552–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Orlinick JR, Elkon KB, Chao MV (1997) Separate domains of the human fas ligand dictate self-association and receptor binding. J Biol Chem 272(51):32221–32229

    Article  CAS  PubMed  Google Scholar 

  119. Hadji A, Ceppi P, Murmann AE, Brockway S, Pattanayak A, Bhinder B, Hau A, De Chant S, Parimi V, Kolesza P, Richards J, Chandel N, Djaballah H, Peter ME (2014) Death induced by CD95 or CD95 ligand elimination. Cell Rep. doi:10.1016/j.celrep.2014.02.035

    PubMed  PubMed Central  Google Scholar 

  120. Buonocore S, Flamand V, Claessen N, Heeringa P, Goldman M, Florquin S (2004) Dendritic cells overexpressing Fas-ligand induce pulmonary vasculitis in mice. Clin Exp Immunol 137(1):74–80. doi:10.1111/j.1365-2249.2004.02514.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS (2011) RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell 44(1):9–16. doi:10.1016/j.molcel.2011.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368–372. doi:10.1038/nature09857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367. doi:10.1038/nature09852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Finlay D, Howes A, Vuori K (2009) Critical role for caspase-8 in epidermal growth factor signaling. Cancer Res 69(12):5023–5029. doi:10.1158/0008-5472.CAN-08-3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci U S A 93(15):7464–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85(6):817–827

    Article  CAS  PubMed  Google Scholar 

  127. Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VA, Mocarski ES, Subramanian D, Green DR, Silverman N, Fitzgerald KA, Marshak-Rothstein A, Latz E (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1beta and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189(12):5508–5512. doi:10.4049/jimmunol.1202121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dupont PJ, Warrens AN (2007) Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 120(1):133–139. doi:10.1111/j.1365-2567.2006.02504.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, Kindler V, Tschopp J, Ricciardi-Castagnoli P (2000) Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 192(11):1661–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stranges PB, Watson J, Cooper CJ, Choisy-Rossi CM, Stonebraker AC, Beighton RA, Hartig H, Sundberg JP, Servick S, Kaufmann G, Fink PJ, Chervonsky AV (2007) Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26(5):629–641. doi:10.1016/j.immuni.2007.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mabrouk I, Buart S, Hasmim M, Michiels C, Connault E, Opolon P, Chiocchia G, Levi-Strauss M, Chouaib S, Karray S (2008) Prevention of autoimmunity and control of recall response to exogenous antigen by Fas death receptor ligand expression on T cells. Immunity 29(6):922–933. doi:10.1016/j.immuni.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  132. Sàb T, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Càc C-B, Blanco P, Le Seyec J, Ducret T, Counillon L, J-Fàü M, Hofman P, Vacher P, Legembre P (2011) The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 9(6):e1001090

    Article  CAS  Google Scholar 

  133. Varanasi V, Khan AA, Chervonsky AV (2014) Loss of the death receptor CD95 (Fas) expression by dendritic cells protects from a chronic viral infection. Proc Natl Acad Sci U S A 111(23):8559–8564. doi:10.1073/pnas.1401750111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lundqvist A, Nagata T, Kiessling R, Pisa P (2002) Mature dendritic cells are protected from Fas/CD95-mediated apoptosis by upregulation of Bcl-X(L). Cancer Immunol Immunother 51(3):139–144. doi:10.1007/s00262-002-0265-7

    Article  CAS  PubMed  Google Scholar 

  135. Krueger A, Fas SC, Baumann S, Krammer PH (2003) The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol Rev 193:58–69

    Article  CAS  PubMed  Google Scholar 

  136. Ju ST, Panka DJ, Cui H, Ettinger R, el-Khatib M, Sherr DH, Stanger BZ, Marshak-Rothstein A (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373(6513):444–448. doi:10.1038/373444a0

    Article  CAS  PubMed  Google Scholar 

  137. Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407(6805):789–795. doi:10.1038/35037728

    Article  CAS  PubMed  Google Scholar 

  138. Kennedy NJ, Kataoka T, Tschopp J, Budd RC (1999) Caspase activation is required for T cell proliferation. J Exp Med 190(12):1891–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Peter ME (2011) Programmed cell death: apoptosis meets necrosis. Nature 471(7338):310–312. doi:10.1038/471310a

    Article  CAS  PubMed  Google Scholar 

  140. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286(5445):1735–1738

    Article  CAS  PubMed  Google Scholar 

  141. Hildeman DA, Zhu Y, Mitchell TC, Bouillet P, Strasser A, Kappler J, Marrack P (2002) Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16(6):759–767

    Article  CAS  PubMed  Google Scholar 

  142. Butt D, Chan TD, Bourne K, Hermes JR, Nguyen A, Statham A, O’Reilly LA, Strasser A, Price S, Schofield P, Christ D, Basten A, Ma CS, Tangye SG, Phan TG, Rao VK, Brink R (2015) FAS inactivation releases unconventional germinal center B cells that escape antigen control and drive IgE and autoantibody production. Immunity 42(5):890–902. doi:10.1016/j.immuni.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  143. Klebanoff CA, Scott CD, Leonardi AJ, Yamamoto TN, Cruz AC, Ouyang C, Ramaswamy M, Roychoudhuri R, Ji Y, Eil RL, Sukumar M, Crompton JG, Palmer DC, Borman ZA, Clever D, Thomas SK, Patel S, Yu Z, Muranski P, Liu H, Wang E, Marincola FM, Gros A, Gattinoni L, Rosenberg SA, Siegel RM, Restifo NP (2016) Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest 126(1):318–334. doi:10.1172/JCI81217

    Article  PubMed  Google Scholar 

  144. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. doi:10.1038/nm.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bettelli E, Korn T, Kuchroo VK (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19(6):652–657. doi:10.1016/j.coi.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Wu C, Karwacz K, Xiao S, Jorgolli M, Gennert D, Satija R, Shakya A, Lu DY, Trombetta JJ, Pillai MR, Ratcliffe PJ, Coleman ML, Bix M, Tantin D, Park H, Kuchroo VK, Regev A (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496(7446):461–468. doi:10.1038/nature11981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl Acad Sci U S A 96(24):13795–13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Strauss G, Lindquist JA, Arhel N, Felder E, Karl S, Haas TL, Fulda S, Walczak H, Kirchhoff F, Debatin KM (2009) CD95 co-stimulation blocks activation of naive T cells by inhibiting T cell receptor signaling. J Exp Med 206(6):1379–1393. doi:10.1084/jem.20082363. jem.20082363 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373(6513):438–441

    Article  CAS  PubMed  Google Scholar 

  150. Muppidi JR, Siegel RM (2004) Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nat Immunol 5(2):182–189

    Article  CAS  PubMed  Google Scholar 

  151. Legembre P, Daburon S, Moreau P, Ichas F, de Giorgi F, Moreau JF, Taupin JL (2005) Amplification of Fas-mediated apoptosis in type II cells via microdomain recruitment. Mol Cell Biol 25(15):6811–6820. doi:10.1128/MCB.25.15.6811-6820.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Steinmetz OM, Turner JE, Paust HJ, Lindner M, Peters A, Heiss K, Velden J, Hopfer H, Fehr S, Krieger T, Meyer-Schwesinger C, Meyer TN, Helmchen U, Mittrucker HW, Stahl RA, Panzer U (2009) CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. J Immunol 183(7):4693–4704. doi:10.4049/jimmunol.0802626

    Article  CAS  PubMed  Google Scholar 

  153. Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, Wan L, Li M (2009) Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 60(5):1472–1483. doi:10.1002/art.24499

    Article  PubMed  Google Scholar 

  154. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. doi:10.1038/nm.3541

    PubMed  PubMed Central  Google Scholar 

  155. Baaten BJ, Cooper AM, Swain SL, Bradley LM (2013) Location, location, location: the impact of migratory heterogeneity on T cell function. Front Immunol 4:311. doi:10.3389/fimmu.2013.00311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22(1):50–60. doi:10.1016/j.tcb.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  157. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9(11):883–897. doi:10.1038/nrd3248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from INCa PLBIO, Fondation ARC, La Ligue contre le Cancer (Comités d’Ille-et-Vilaine/du Morbihan/des Côtes d’Armor/du Finistère/du Maine et Loire), Cancéropole Grand Ouest, Région Bretagne and Rennes Métropole. AP is supported by La Ligue contre le Cancer and Région Bretagne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Legembre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Poissonnier, A., Legembre, P. (2017). Atypical Immune Functions of CD95/CD95L. In: Micheau, O. (eds) TRAIL, Fas Ligand, TNF and TLR3 in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-56805-8_7

Download citation

Publish with us

Policies and ethics