Skip to main content

Intraoperative Imaging for Pituitary Surgery

  • Chapter
  • First Online:
Transsphenoidal Surgery

Abstract

Pituitary adenomas are benign tumors that account for 10–15% of intracranial neoplasms. These tumors often are benign incidental findings, but can cause significant morbidity through excess hormone production or mass effect on the optic chiasm or other adjacent structures. Surgery via the transsphenoidal route remains the primary treatment, with craniotomy approaches reserved for more extensive tumors. Maximal safe resection is typically the goal of any surgical procedure for pituitary adenomas. A number of strategies are utilized in an effort to maximize safe adenoma resection including optimizing surgical exposure, using stereotactic navigation to confirm anatomical landmarks and predict the extent of removal (Charalampaki et al. J Clin Neurosci 16:786–789, 2009), and implementing endoscopy to provide a high-resolution panoramic view of the surgical field, but despite these approaches, incomplete tumor removal is still a potential issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. DeLellis R, Lloyd R, Hietz P, Eng C. Pathology and genetics: tumours of endocrine organs (World Health Organization classification of tumours). Lyon: IARC Press; 2004.

    Google Scholar 

  2. Asa SL, Ezzat S. The pathogenesis of pituitary tumours. Nat Rev Cancer. 2002;2:836–49. doi:10.1038/nrc926.

    Article  CAS  PubMed  Google Scholar 

  3. Jane Jr. JA, Laws Jr. ER. Endoscopy versus MR imaging. J Neurosurg. 2010;112:734; discussion 735. doi: 10.3171/2009.7.JNS091042.

  4. Schaberg MR, Anand VK, Schwartz TH, Cobb W. Microscopic versus endoscopic transnasal pituitary surgery. Curr Opin Otolaryngol Head Neck Surg. 2010;18:8–14. doi:10.1097/MOO.0b013e328334db5b.

    Article  PubMed  Google Scholar 

  5. Tabaee A, Anand VK, Barrón Y, et al. Endoscopic pituitary surgery: a systematic review and meta-analysis. J Neurosurg. 2009;111:545–54. doi:10.3171/2007.12.17635.

    Article  PubMed  Google Scholar 

  6. Charalampaki P, Ayyad A, Kockro RA, Perneczky A. Surgical complications after endoscopic transsphenoidal pituitary surgery. J Clin Neurosci. 2009;16:786–9. doi:10.1016/j.jocn.2008.09.002.

    Article  PubMed  Google Scholar 

  7. Washington CW, Zipfel GJ, Chicoine MR, et al. Comparing indocyanine green videoangiography to the gold standard of intraoperative digital subtraction angiography used in aneurysm surgery. J Neurosurg. 2013;118:420–7. doi:10.3171/2012.10.JNS11818.

    Article  PubMed  Google Scholar 

  8. Derdeyn CP, Moran CJ, Cross DT, et al. Intraoperative digital subtraction angiography: a review of 112 consecutive examinations. AJNR Am J Neuroradiol. 1995;16:307–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Senft C, Bink A, Franz K, et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12:997–1003. doi:10.1016/S1470-2045(11)70196-6.

    Article  PubMed  Google Scholar 

  10. Sylvester PT, Evans J, Zipfel GJ, et al. Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary. 2015;18:72–85. doi:10.1007/s11102-014-0560-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tempany CMC, Jayender J, Kapur T, et al. Multimodal imaging for improved diagnosis and treatment of cancers. Cancer. 2015;121:817–27. doi:10.1002/cncr.29012.

    Article  PubMed  Google Scholar 

  12. Buchfelder M, Schlaffer S-M. Intraoperative magnetic resonance imaging during surgery for pituitary adenomas: pros and cons. Endocrine. 2012;42:483–95. doi:10.1007/s12020-012-9752-6.

    Article  CAS  PubMed  Google Scholar 

  13. Black PM, Moriarty T, Alexander E, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41:831–42; discussion 842–5.

    Google Scholar 

  14. Alexander E, Moriarty TM, Kikinis R, et al. The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg. 1997;68:10–7.

    Article  Google Scholar 

  15. Bergese SD, Puente EG. Anesthesia in the intraoperative MRI environment. Neurosurg Clin N Am. 2009;20:155–62. doi:10.1016/j.nec.2009.04.001.

    Article  PubMed  Google Scholar 

  16. Hemingway M, Kilfoyle M. Safety planning for intraoperative magnetic resonance imaging. AORN J. 2013;98:508–24. doi:10.1016/j.aorn.2013.09.002.

    Article  PubMed  Google Scholar 

  17. Rahmathulla G, Recinos PF, Traul DE, et al. Surgical briefings, checklists, and the creation of an environment of safety in the neurosurgical intraoperative magnetic resonance imaging suite. Neurosurg Focus. 2012;33:E12. doi:10.3171/2012.9.FOCUS12260.

    Article  PubMed  Google Scholar 

  18. Schmitz B, Nimsky C, Wendel G, et al. Anesthesia during high-field intraoperative magnetic resonance imaging experience with 80 consecutive cases. J Neurosurg Anesthesiol. 2003;15:255–62.

    Article  Google Scholar 

  19. Tan TK, Goh J. The anaesthetist’s role in the setting up of an intraoperative MR imaging facility. Singap Med J. 2009;50:4–10.

    CAS  Google Scholar 

  20. Tan JKT, Tan TK, Goh JPS, Ghadiali NF. Prospective review of safety incidents reported in the iMRI OT (Intraoperative Magnetic Resonance Imaging Operating Theatre). Proc Singapore Healthc. 2014;23:273–81. doi:10.1177/201010581402300403.

    Article  Google Scholar 

  21. Vitaz TW, Inkabi KE, Carrubba CJ. Intraoperative MRI for transphenoidal procedures: short-term outcome for 100 consecutive cases. Clin Neurol Neurosurg. 2011;113:731–5. doi: S0303-8467(11)00226-5 [pii]. doi:10.1016/j.clineuro.2011.07.025.

    Article  PubMed  Google Scholar 

  22. Ramm-Pettersen J, Berg-Johnsen J, Hol PK, et al. Intra-operative MRI facilitates tumour resection during trans-sphenoidal surgery for pituitary adenomas. Acta Neurochir. 2011;153:1367–73. doi:10.1007/s00701-011-1004-7.

    Article  PubMed  Google Scholar 

  23. Martin CH, Schwartz R, Jolesz F, Black PM. Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary. 1999;2:155–62.

    Article  CAS  Google Scholar 

  24. Moriarty TM, Titsworth WL. The evolution of iMRI utilization for pediatric neurosurgery: a single center experience. Acta Neurochir Suppl. 2011;109:89–94. doi:10.1007/978-3-211-99651-5_14.

    Article  PubMed  Google Scholar 

  25. Bohinski RJ, Warnick RE, Gaskill-Shipley MF, et al. Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery. 2001;49:1133–.43; discussion 1143–4.

    Google Scholar 

  26. Theodosopoulos PV, Leach J, Kerr RG, et al. Maximizing the extent of tumor resection during transsphenoidal surgery for pituitary macroadenomas: can endoscopy replace intraoperative magnetic resonance imaging? J Neurosurg. 2010;112:736–43. doi:10.3171/2009.6.JNS08916.

    Article  PubMed  Google Scholar 

  27. Fahlbusch R, Ganslandt O, Buchfelder M, et al. Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg. 2001;95:381–90. doi:10.3171/jns.2001.95.3.0381.

    Article  CAS  PubMed  Google Scholar 

  28. Steinmeier R, Fahlbusch R, Ganslandt O, et al. Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery. 1998;43:739–47; discussion 747–8.

    Google Scholar 

  29. Hadani M, Spiegelman R, Feldman Z, et al. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery. 2001;48:799–807; discussion 807–9.

    Google Scholar 

  30. Schwartz TH, Stieg PE, Anand VK. Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery. 2006;58:ONS44–51.

    PubMed  Google Scholar 

  31. Anand VK, Schwartz TH, Hiltzik DH, Kacker A. Endoscopic transphenoidal pituitary surgery with real-time intraoperative magnetic resonance imaging. Am J Rhinol. 2006;20:401–5.

    Article  Google Scholar 

  32. Kim EH, Oh MC, Kim SH. Application of low-field intraoperative magnetic resonance imaging in transsphenoidal surgery for pituitary adenomas: technical points to improve the visibility of the tumor resection margin. Acta Neurochir. 2013;155:485–93. doi:10.1007/s00701-012-1608-6.

    Article  PubMed  Google Scholar 

  33. Hlavica M, Bellut D, Lemm D, et al. Impact of ultra-low-field intraoperative magnetic resonance imaging on extent of resection and frequency of tumor recurrence in 104 surgically treated nonfunctioning pituitary adenomas. World Neurosurg. 2013;79:99–109. doi:10.1016/j.wneu.2012.05.032.

    Article  PubMed  Google Scholar 

  34. Berkmann S, Fandino J, Müller B, et al. Intraoperative MRI and endocrinological outcome of transsphenoidal surgery for non-functioning pituitary adenoma. Acta Neurochir. 2012;154:639–47. doi:10.1007/s00701-012-1285-5.

    Article  PubMed  Google Scholar 

  35. Berkmann S, Fandino J, Zosso S, et al. Intraoperative magnetic resonance imaging and early prognosis for vision after transsphenoidal surgery for sellar lesions. J Neurosurg. 2011;115:518–27. doi:10.3171/2011.4.JNS101568.

    Article  PubMed  Google Scholar 

  36. Wu JS, Shou XF, Yao CJ, et al. Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery. 2009;65:61–3. doi:10.1227/01.NEU.0000348549.26832.51. 00006123-200907000-00017 [pii].

    Article  Google Scholar 

  37. Ahn JY, Jung JY, Kim J, et al. How to overcome the limitations to determine the resection margin of pituitary tumours with low-field intra-operative MRI during trans-sphenoidal surgery: usefulness of gadolinium-soaked cotton pledgets. Acta Neurochir. 2008;150:763–71; discussion 771. doi: 10.1007/s00701-008-1505-1.

  38. Gerlach R, du Mesnil de Rochemont R, Gasser T, et al. Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery. 2008;63:272–5. doi:10.1227/01.NEU.0000312362.63693.78. 00006123-200808000-00018 [pii].

    Article  PubMed  Google Scholar 

  39. Baumann F, Schmid C, Bernays RL. Intraoperative magnetic resonance imaging-guided transsphenoidal surgery for giant pituitary adenomas. Neurosurg Rev. 2010;33:83–90. doi:10.1007/s10143-009-0230-4.

    Article  PubMed  Google Scholar 

  40. Bellut D, Hlavica M, Schmid C, Bernays RL. Intraoperative magnetic resonance imaging-assisted transsphenoidal pituitary surgery in patients with acromegaly. Neurosurg Focus. 2010;29:E9. doi:10.3171/2010.7.FOCUS10164.

    Article  PubMed  Google Scholar 

  41. Czyz M, Tabakow P, Lechowicz-Glogowska B, Jarmundowicz W. Prospective study on the efficacy of low-field intraoperative magnetic resonance imaging in neurosurgical operations. Neurol Neurochir Pol. 2011;45:226–34. doi: 17155 [pii].

    Article  Google Scholar 

  42. Berkmann S, Schlaffer S, Nimsky C, et al. Intraoperative high-field MRI for transsphenoidal reoperations of nonfunctioning pituitary adenoma. J Neurosurg. 2014;121(5):1–10. doi:10.3171/2014.6.JNS131994.

    Article  Google Scholar 

  43. Berkmann S, Schlaffer S, Nimsky C, et al. Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging. Acta Neurochir. 2014;156(12):2233–43.

    Article  Google Scholar 

  44. Coburger J, König R, Seitz K, et al. Determining the utility of intraoperative magnetic resonance imaging for transsphenoidal surgery: a retrospective study. J Neurosurg. 2014;120:346–56. doi:10.3171/2013.9.JNS122207.

    Article  PubMed  Google Scholar 

  45. Paterno’ V, Fahlbusch R. High-field iMRI in transsphenoidal pituitary adenoma surgery with special respect to typical localization of residual tumor. Acta Neurochir. 2014;156:463–74; discussion 474. doi: 10.1007/s00701-013-1978-4.

  46. Tanei T, Nagatani T, Nakahara N, et al. Use of high-field intraoperative magnetic resonance imaging during endoscopic transsphenoidal surgery for functioning pituitary microadenomas and small adenomas located in the intrasellar region. Neurol Med Chir (Tokyo). 2013;53:501–10.

    Article  Google Scholar 

  47. Szerlip NJ, Zhang Y-CC, Placantonakis DG, et al. Transsphenoidal resection of sellar tumors using high-field intraoperative magnetic resonance imaging. Skull Base. 2011;21:223–32. doi:10.1055/s-0031-1277262.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meng X, Xu B, Wei S, et al. High-field intraoperative magnetic resonance imaging suite with neuronavigation system: implementation and preliminary experience in the pituitary adenoma operation with transsphenoidal approach. Zhonghua Wai Ke Za Zhi. 2011;49:703–6.

    PubMed  Google Scholar 

  49. Nimsky C, Keller B, Ganslandt O, et al. Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery. 2006;58:105–14. doi:10.1227/01.NEU.0000219198.38423.1E. 00006123-200607000-00013 [pii].

    Article  Google Scholar 

  50. Fahlbusch R, Keller B, Ganslandt O, et al. Transsphenoidal surgery in acromegaly investigated by intraoperative high-field magnetic resonance imaging. Eur J Endocrinol. 2005;153:239–48. doi: 153/2/239 [pii] 10.1530/eje.1.01970.

    Article  CAS  Google Scholar 

  51. Li J, Cong Z, Ji X, et al. Application of intraoperative magnetic resonance imaging in large invasive pituitary adenoma surgery. Asian J Surg. 2015;38:168–73. doi:10.1016/j.asjsur.2015.03.001.

    Article  PubMed  Google Scholar 

  52. Fomekong E, Duprez T, Ntsambi G, et al. Intraoperative 3T MRI for pituitary macroadenoma resection: initial experience in 73 consecutive patients. Clin Neurol Neurosurg. 2014;126:143–9. doi:10.1016/j.clineuro.2014.09.001.

    Article  PubMed  Google Scholar 

  53. Lang MJ, Kelly JJ, Sutherland GR. A moveable 3-tesla intraoperative magnetic resonance imaging system. Neurosurgery. 2011;68:168–79. doi:10.1227/NEU.0b013e3182045803.

    Article  PubMed  Google Scholar 

  54. Tabakow P, Czyz M, Jarmundowicz W, Lechowicz-Głogowska E. Surgical treatment of pituitary adenomas using low-field intraoperative magnetic resonance imaging. Adv Clin Exp Med. 2012;21:495–503.

    PubMed  Google Scholar 

  55. Netuka D, Masopust V, Belsan T, et al. One year experience with 3.0 T intraoperative MRI in pituitary surgery. Acta Neurochir Suppl. 2011;109:3–5. doi:10.1007/978-3-211-99651-5.

    Article  Google Scholar 

  56. Pamir MN. Intraoperative imaging. Vienna: Springer Vienna; 2011.

    Book  Google Scholar 

  57. Jankovski A, Francotte F, Vaz G, et al. Intraoperative magnetic resonance imaging at 3-T using a dual independent operating room-magnetic resonance imaging suite: development, feasibility, safety, and preliminary experience. Neurosurgery. 2008;63:412–24; discussion 424–6. doi: 10.1227/01.NEU.0000324897.59311.1C.

  58. Hall WA, Galicich W, Bergman T, Truwit CL. 3-Tesla intraoperative MR imaging for neurosurgery. J Neuro-Oncol. 2006;77:297–303. doi:10.1007/s11060-005-9046-4.

    Article  Google Scholar 

  59. Pamir MN, Peker S, Ozek MM, Dincer A. Intraoperative MR imaging: preliminary results with 3 Tesla MR system. Acta Neurochir Suppl. 2006;98:97–100.

    Article  CAS  Google Scholar 

  60. Sutherland GR, Kaibara T, Louw D, et al. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg. 1999;91:804–13. doi:10.3171/jns.1999.91.5.0804.

    Article  CAS  PubMed  Google Scholar 

  61. Kaibara T, Saunders JK, Sutherland GR. Advances in mobile intraoperative magnetic resonance imaging. Neurosurgery. 2000;47:131–7; discussion 137–8.

    Google Scholar 

  62. Chabardes S, Isnard S, Castrioto A, et al. Surgical implantation of STN-DBS leads using intraoperative MRI guidance: technique, accuracy, and clinical benefit at 1-year follow-up. Acta Neurochir. 2015;157:729–37. doi:10.1007/s00701-015-2361-4.

    Article  PubMed  Google Scholar 

  63. Bond AE, Dallapiazza RF, Lopes MB, Elias WJ. Convection-enhanced delivery improves MRI visualization of basal ganglia for stereotactic surgery. J Neurosurg. 2016;125(5):1–7. doi:10.3171/2015.10.JNS151154.

    Article  Google Scholar 

  64. Cui Z, Pan L, Song H, et al. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosurg. 2016;124:62–9. doi:10.3171/2015.1.JNS141534.

    Article  PubMed  Google Scholar 

  65. Hawasli AH, Bagade S, Shimony JS, et al. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery. 2013;73:1007–17. doi:10.1227/NEU.0000000000000144.

    Article  PubMed  Google Scholar 

  66. Hawasli AH, Kim AH, Dunn GP, et al. Stereotactic laser ablation of high-grade gliomas. Neurosurg Focus. 2014;37:E1. doi:10.3171/2014.9.FOCUS14471.

    Article  PubMed  Google Scholar 

  67. Mohammadi AM, Hawasli AH, Rodriguez A, et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3:971–9. doi:10.1002/cam4.266.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Carpentier A, McNichols RJ, Stafford RJ, et al. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011;43:943–50. doi:10.1002/lsm.21138.

    Article  PubMed  Google Scholar 

  69. Sloan AE, Ahluwalia MS, Valerio-Pascua J, et al. Results of the NeuroBlate system first-in-humans phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg. 2013;118:1202–19. doi:10.3171/2013.1.JNS1291.

    Article  PubMed  Google Scholar 

  70. Chicoine MR, Lim CC, Evans JA, et al. Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir Suppl. 2011;109:97–102. doi:10.1007/978-3-211-99651-5_15.

    Article  PubMed  Google Scholar 

  71. Sylvester P, Moran C, Derdeyn C, et al. Endovascular management of acute and delayed internal carotid artery injuries secondary to transsphenoidal pituitary adenoma resection. J. Neurosurg. 2015;125(5):1256–76. http://thejns.org/doi/abs/10.3171/2015.6.JNS142483

    Article  Google Scholar 

  72. Makary M, Chiocca EA, Erminy N, et al. Clinical and economic outcomes of low-field intraoperative MRI-guided tumor resection neurosurgery. J Magn Reson Imaging. 2011;34:1022–30.

    Article  Google Scholar 

  73. Okudera H, Takemae T, Kobayashi S. Intraoperative computed tomographic scanning during transsphenoidal surgery: technical note. Neurosurgery. 1993;32:1041–3.

    Article  CAS  Google Scholar 

  74. Lee C-C, Lee S-T, Chang C-N, et al. Volumetric measurement for comparison of the accuracy between intraoperative CT and postoperative MR imaging in pituitary adenoma surgery. AJNR Am J Neuroradiol. 2011;32:1539–44. doi:10.3174/ajnr.A2506.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tosaka M, Nagaki T, Honda F, et al. Multi-slice computed tomography-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma: a comparison with conventional microscopic transsphenoidal surgery. Neurol Res. 2015;37:951–8. doi:10.1179/1743132815Y.0000000078.

    Article  PubMed  Google Scholar 

  76. Eboli P, Shafa B, Mayberg M. Intraoperative computed tomography registration and electromagnetic neuronavigation for transsphenoidal pituitary surgery: accuracy and time effectiveness. J Neurosurg. 2011;114:329–35. doi:10.3171/2010.5.JNS091821.

    Article  PubMed  Google Scholar 

  77. Ram Z, Shawker T, Bradford M, et al. Intraoperative ultrasound-directed resection of pituitary tumors. J Neurosurg. 1995;83:225–30.

    Article  CAS  Google Scholar 

  78. Doppman J, Ram Z, Shawker T, Oldfleld E. Intraoperative US of the pituitary gland. Radiology. 1994;192:111–5.

    Article  CAS  Google Scholar 

  79. Litvack Z, Zada G, Laws E. Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures. J Neurosurg. 2012;116:935–41.

    Article  Google Scholar 

  80. Sandow N, Klene W, Elbelt U, et al. Intraoperative indocyanine green videoangiography for identification of pituitary adenomas using a microscopic transsphenoidal approach. Pituitary. 2015;18:613–20. doi:10.1007/s11102-014-0620-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Chicoine MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sylvester, P.T., Chicoine, M.R. (2017). Intraoperative Imaging for Pituitary Surgery. In: Laws, Jr, E.R., Cohen-Gadol, A.A., Schwartz, T.H., Sheehan, J.P. (eds) Transsphenoidal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-56691-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56691-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56689-4

  • Online ISBN: 978-3-319-56691-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics