Skip to main content

Introduction to Linear and Nonlinear Integrable Theories in Discrete Complex Analysis

  • Chapter
  • First Online:
Symmetries and Integrability of Difference Equations

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

The field of discrete differential geometry lies on the border of classical differential geometry and discrete geometry. Its aim is to develop discrete geometric theories which respect fundamental aspects of the corresponding smooth ones. Also, these discretizations often clarify structures of the smooth theory.

In our presentation, we focus on the area of discrete complex analysis. In particular, we introduce several concepts of discrete holomorphic functions based on a linear approach and on nonlinear theories concerning cross-ratio systems, circle patterns and discrete conformal equivalence. These examples are used to illustrate some characteristic features in discrete differential geometry like integrability as consistency and Bäcklund–Darboux transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233(3), 513–543 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S.I. Agafonov, A.I. Bobenko, Discrete z γ and Painlevé equations. Int. Math. Res. Not. 2000(4), 165–193 (2000)

    Article  MATH  Google Scholar 

  3. L.V. Ahlfors, Complex Analysis. International Series in Pure and Applied Mathematics, 3rd edn. (McGraw-Hill, New York, 1978)

    Google Scholar 

  4. A.F. Beardon, T. Dubejko, K. Stephenson, Spiral hexagonal circle packings in the plane. Geom. Dedicata 49(1), 39–70 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Beliaev, S. Smirnov, Random conformal snowflakes. Ann. Math. (2) 172(1), 597–615 (2010)

    Google Scholar 

  6. L. Bianchi, Lezioni di geometria differenziale, 3rd edn. (Enrico Spoerri, Pisa, 1923)

    MATH  Google Scholar 

  7. A.I. Bobenko, Discrete conformal maps and surfaces, in Symmetries and Integrability of Difference Equations, ed. by P.A. Clarkson, F.W. Nijhoff. London Mathematical Society Lecture Note Series, vol. 255 (Cambridge University Press, Cambridge, 1999), pp. 97–108

    Google Scholar 

  8. A.I. Bobenko, F. Günther, Discrete complex analysis on planar quad-graphs, in Advances in Discrete Differential Geometry, ed. by A.I. Bobenko (Springer, Berlin, 2016), pp. 57–132

    Chapter  Google Scholar 

  9. A.I. Bobenko, T. Hoffmann, Conformally symmetric circle packings. A generalization of Doyle spirals. Exp. Math. 10, 141–150 (2001)

    Article  MATH  Google Scholar 

  10. A.I. Bobenko, T. Hoffmann, Hexagonal circle patterns and integrable systems: patterns with constant angles. Duke Math. J. 116, 525–566 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.I. Bobenko, U. Pinkall, Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)

    MathSciNet  MATH  Google Scholar 

  12. A.I. Bobenko, U. Pinkall, Discretization of surfaces and integrable systems, in Discrete Integrable Geometry and Physics, ed. by A.I. Bobenko, R. Seiler. Oxford Lecture Series in Mathematics and Its Applications, vol. 16 (Clarendon Press, New York, 1999), pp. 3–58

    Google Scholar 

  13. A.I. Bobenko, B.A. Springborn, Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356, 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.I. Bobenko, Yu.B. Suris, Integrable systems on quad-graphs. Int. Math. Res. Not. 11, 573–611 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.I. Bobenko, Yu.B. Suris, Discrete Differential Geometry. Integrable Structure. Graduate Studies in Mathematics, vol. 98 (American Mathematical Society, Providence, 2008)

    Google Scholar 

  16. A.I. Bobenko, T. Hoffmann, Yu.B. Suris, Hexagonal circle patterns and integrable systems: patterns with the multi-ratio property and Lax equations on the regular triangular lattice. Int. Math. Res. Not. 3, 111–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.I. Bobenko, C. Mercat, Yu.B. Suris, Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)

    Article  MATH  Google Scholar 

  18. A.I. Bobenko, U. Pinkall, B. Springborn, Discrete conformal maps and ideal hyperbolic polyhedra. Geom. Topol. 19(4), 2155–2215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Bohle, F. Pedit, U. Pinkall, Discrete holomorphic geometry I. Darboux transformations and spectral curves. J. Reine Angew. Math. 637, 99–139 (2009)

    MATH  Google Scholar 

  20. S. Born, U. Bücking,, B.A. Springborn, Quasiconformal distortion of projective transformations and discrete conformal maps. Discrete Comput. Geom. 57, 305–317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.R. Brightwell, E.R. Scheinerman, Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. U. Bücking, Approximation of conformal mappings by circle patterns. Geom. Dedicata 137, 163–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. U. Bücking, Rigidity of quasicrystallic and z γ-circle patterns. Discrete Comput. Geom. 46(2), 223–251 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. U. Bücking, Approximation of conformal mappings on triangular lattices, in Advances in Discrete Differential Geometry, ed. by A.I. Bobenko (Springer, Berlin, 2016), pp. 133–149

    Chapter  Google Scholar 

  25. D. Chelkak, Robust discrete complex analysis: a toolbox. Ann. Probab. 44(1), 628–683 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Chelkak, S. Smirnov, Universality in the 2D ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. Cieśliński, A. Doliwa, P.M. Santini, The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Phys. Lett. A 235(5), 480–488 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differentialgleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, 2nd edn. (Gauthies-Villars, Paris, 1910)

    MATH  Google Scholar 

  30. G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vols. I–IV, 2nd edn. (Gauthies-Villars, Paris, 1914–1927)

    Google Scholar 

  31. T. Dubejko, K. Stephenson, Circle packing: experiments in discrete analytic function theory. Exp. Math. 4, 307–348 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. R.J. Duffin, Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  33. R.J. Duffin, Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. I.A. Dynnikov, S.P. Novikov, Geometry of the triangle equation on two-manifolds. Mosc. Math. J. 3(2), 419–438 (2003)

    MathSciNet  MATH  Google Scholar 

  35. J. Ferrand, Fonctions préharmoniques et fonctions préholomorphes. Bull. Sci. Math. (2) 68, 152–180 (1944)

    Google Scholar 

  36. E. Freitag, R. Busam, Complex Analysis, 2nd edn. (Springer, Berlin, 2009)

    MATH  Google Scholar 

  37. P.G. Grinevich, S.P. Novikov, The Cauchy kernel for the Dynnikov–Novikov DN-discrete complex analysis in triangular lattices. Russ. Math. Surv. 62(4), 799–801 (2007)

    Article  MATH  Google Scholar 

  38. B. Grünbaum, Convex Polytopes. Pure and Applied Mathematics, vol. 16 (Wiley, New York, 1967)

    Google Scholar 

  39. X. Gu, R. Guo, F. Luo, J. Sun, T. Wu, A discrete uniformization theorem for polyhedral surfaces. II. arXiv:1401.4594

    Google Scholar 

  40. X. Gu, F. Luo, J. Sun, T. Wu, A discrete uniformization theorem for polyhedral surfaces. arXiv:1309.4175

    Google Scholar 

  41. F. Günther, Discrete Riemann surfaces and integrable systems. Ph.D. thesis, TU Berlin (2014)

    Google Scholar 

  42. Z. -X. He, Rigidity of infinite disk patterns. Ann. Math. 149, 1–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Z. -X. He, O. Schramm, On the convergence of circle packings to the Riemann map. Invent. Math. 125(2), 285–305 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Z. -X. He, O. Schramm, The C -convergence of hexagonal disk packings to the Riemann map. Acta Math. 180(2), 219–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. U. Hertrich-Jeromin, T. Hoffmann, U. Pinkall, A discrete version of the Darboux transformation for isothermic surfaces, in Discrete Integrable Geometry and Physics, ed. by A.I. Bobenko, R. Seiler, Oxford Lecture Series in Mathematics and Its Applications, vol. 16 (Clarendon Press, New York, 1999), pp. 59–81

    Google Scholar 

  46. R. Hirota, Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43, 2079–2086 (1977)

    MATH  Google Scholar 

  47. R.P. Isaacs, A finite difference function theory. Univ. Nac. Tucumán Revista A 2, 177–201 (1941)

    MathSciNet  MATH  Google Scholar 

  48. R. Kenyon, Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Kenyon, The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. R. Kenyon, J. -M. Schlenker, Rhombic embeddings of planar quad-graphs. Trans. Am. Math. Soc. 357(9), 3443–3458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Koebe, Kontaktprobleme der konformen Abbildung. Abh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 88, 141–164 (1936)

    MATH  Google Scholar 

  52. B.G. Konopelchenko, W.K. Schief, Menelaus’ theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy. J. Phys. A 35(29), 6125–6144 (2002)

    MATH  Google Scholar 

  53. B.G. Konopelchenko, W.K. Schief, Reciprocal figures, graphical statics, and inversive geometry of the Schwarzian BKP hierarchy. Stud. Appl. Math. 109(1), 89–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. W.Y. Lam, U. Pinkall, Holomorphic vector fields and quadratic differentials on planar triangular meshes, in Advances in Discrete Differential Geometry, ed. by A.I. Bobenko (Springer, Berlin, 2016), pp. 241–265

    Chapter  Google Scholar 

  55. S.-Y. Lan, D.-Q. Dai, The C -convergence of SG circle patterns to the Riemann mapping. J. Math. Anal. Appl. 332(2), 1351–1364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Luo, Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Matthes, Convergence in discrete Cauchy problems and applications to circle patterns. Conform. Geom. Dyn. 9, 1–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. C. Mercat, Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218, 177–216 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. T. Miwa, On Hirota’s difference equations. Proc. Jpn. Acad. Ser. A Math. Sci. 58, 9–12 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  60. J.J.C. Nimmo, W.K. Schief, Superposition principles associated with the Moutard transformation: an integrable discretization of a (2 + 1)-dimensional sine-Gordon system. Proc. Math. Phys. Eng. Sci. 453(1957), 255–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  61. S.P. Novikov, New discretization of complex analysis: the Euclidean and hyperbolic planes. Proc. Steklov Inst. Math. 273(1), 238–251 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. I. Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. (2) 139(3), 553–580 (1994)

    Google Scholar 

  63. B. Rodin, D. Sullivan, The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. O. Schramm, How to cage an egg. Invent. Math. 107(3), 543–560 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. O. Schramm, Circle patterns with the combinatorics of the square grid. Duke Math. J. 86, 347–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  66. O. Schramm, S. Sheffield, Harmonic explorer and its convergence to SLE4. Ann. Probab. 33(6), 2127–2148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. S. Smirnov, H. Duminil-Copin, Conformal invariance of lattice models, in Probability and Statistical Physics in Two and More Dimensions, ed. by D. Ellwood, C. Newman, V. Sidoravicius, W. Werner. Clay Mathematics Proceedings, vol. 15 (American Mathematical Society, Providence, 2012), pp. 213–276

    Google Scholar 

  68. B. Springborn, P. Schröder, U. Pinkall, Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 77 (2008)

    Google Scholar 

  69. K. Stephenson, Introduction to Circle Packing (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  70. W.P. Thurston, The finite Riemann mapping theorem. Invited address at the International Symposium in Celebration of the Proof of the Bieberbach Conjecture, Purdue University (1985)

    Google Scholar 

  71. T. Wu, D. Gu, J. Sun, Rigidity of infinite hexagonal triangulation of the plane. Trans. Am. Math. Soc. 367(9), 6539–6555 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. G.M. Ziegler, Convex polytopes: extremal constructions and f-vector shapes, in Geometric Combinatorics, ed. by E. Miller, V. Reiner, B. Sturmfels. IAS/Park City Mathematics Series, vol. 13 (American Mathematical Society, Providence, 2007), pp. 617–692

    Google Scholar 

Download references

Acknowledgements

The author is supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics.”

Furthermore, I am grateful to Nikolay Dimitrov for discussions on integrability in the context of discrete differential geometry, in particular concerning cross-ratio systems and conformally equivalent triangulations. Many thanks also to the referee for his careful reading and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Bücking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bücking, U. (2017). Introduction to Linear and Nonlinear Integrable Theories in Discrete Complex Analysis. In: Levi, D., Rebelo, R., Winternitz, P. (eds) Symmetries and Integrability of Difference Equations. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-56666-5_4

Download citation

Publish with us

Policies and ethics